1) linearly polarized Bessel-Gauss beam
线性偏振Bessel-Gauss光束
2) azimuthally polarized Bessel-Gauss beam
方位偏振Bessel-Gauss光束
1.
With Collins diffraction integral formula in the paraxial approximation, the analytical expressions for the linearly polarized Bessel-Gauss beam and the azimuthally polarized Bessel-Gauss beam through any axisymmetric optical system that can be described by an ABCD ray transfer matrix are given in this paper.
利用Collins衍射积分公式,给出了线性偏振Bessel-Gauss和方位偏振Bessel-Gauss光束通过ABCD轴对称光学系统的解析表达式。
3) Bessel-Gauss beam
Bessel-Gauss光束
1.
AbstractBy means of Collins diffraction integral formula in the paraxial approximation ,the analytical expression for azimuthally polarized Bessel-Gauss beam through any axisymmetric optical system that can be described by an ABCD ray transfer matrix is given in this paper.
利用Collins衍射积分公式,给出了方位偏振Bessel-Gauss光束通过ABCD轴对称光学系统的解析表达式。
2.
This article makes theoretical analysis on the relationship and distinction between Bessel and Bessel-Gauss beams,the optical intensity distribution at any propagation plane of ideal Bessel beam and the Bessel-Gauss beam,and the effect of the beam waist and the cavity length L on the Bessel-Gauss beam were simulated.
理论分析Bessel光束和Bessel-Gauss光束的相互联系及区别,数值模拟理想Bessel光束和Bessel-Gauss光束在任意平面的径向光强分布,以及光腰半径和谐振腔腔长对输出Bessel-Gauss光束的影响。
4) Pulsed Bessel-Gauss beam
Bessel-Gauss脉冲光束
6) Bessel beam
Bessel光束
1.
Based on the theory of diffraction integral,the optical field distribution of plane wave passing through an axicon is given,and he intensity distribution in cross-section of Bessel beam is simulated.
由衍射积分理论给出平行光通过轴棱锥后的光场分布表达式,模拟得到Bessel光束截面光强分布图。
2.
The propagation features of Bessel beams are numerically calculated.
利用数值计算从光场振幅的角度研究了 Bessel光束的纵向性质 ,发现 Bessel光束在自由空间中的传播可以理解为我们称之为 Bessel调制光场对另一个振幅为 1的平面波的调制 。
3.
This article makes theoretical analysis on the relationship and distinction between Bessel and Bessel-Gauss beams,the optical intensity distribution at any propagation plane of ideal Bessel beam and the Bessel-Gauss beam,and the effect of the beam waist and the cavity length L on the Bessel-Gauss beam were simulated.
理论分析Bessel光束和Bessel-Gauss光束的相互联系及区别,数值模拟理想Bessel光束和Bessel-Gauss光束在任意平面的径向光强分布,以及光腰半径和谐振腔腔长对输出Bessel-Gauss光束的影响。
补充资料:Bessel不等式
Bessel不等式
Bessel inequality
恢s犯一不等式{Be、sel inequaiity;.沁仪划.”搜哪峨洲,助i 不等式 。{汀,叭、川2 }}_/1I2以户)艺片七竺{兴一 黑沙。,价。, ,、{队中。}- 二、,}}r一‘习址一} 六!!”卜·ilj~’其中./是(准)Hill)。rt空间H‘「“的一个儿素,(f,动是11l的数量积,{呱:加一」}是11中非零儿素的正交系.无沦指标集4的基数是多少,Besscl不等式的右边都至多含有可数个」卜零翔.Bessc】不等式是从Bessd恒等式(Bessell(lentlt乡) ……了一,“一r……二三!、,?一客/‘、{戈一、:推得的,此式对j任意有限个儿素的集合{甲:;月‘二月{成立.在恒等;卜扫,护是向量厂关卜Ll一交系{叭一甲}的four,er系数u[I *“。二一牛“,汽.),*。二(汽,汽)· ~Or Bessel不等式的儿何意义在j一:元素f在儿素叭恤已封所生成的线性子空间上的d交投影的模不超过厂的模(即,直角三角形的斜边长不小于直角边的长).向量j属于向鼠价:口已月)所生成的闭线J性r空间的充分必要条件是Bessol不等式成为等式.如果对卜任意厂〔H都有一上述情况出现则称P~val等式(P ilrscValcquality)对上H旧的正交系{价。::C刁{成立 对于H中线叫一无关的(不一定是比交的冲七素系{甲,::二l,2…{Bessel恒等式及Bessel不等式分别取 形式 …1,。一今。:,‘、.。。。二!{,三 {l,刀万}{ 三}}f}2一艺帐”了,沪。)汀,今), 。刀二! 及 }If!l;)艺b:刀汀,毋。叮,切。), 。,刀二! 其中代产是最初的儿素系中前。个向量的Gram矩阵 (见Gralll行列式((子ram determ,na一It))的逆矩阵中的 J‘素. 这个不等式是由卜W.Bessd在1828年对扭角 函数系导出的.【补任】通常,把几素的比交系{明,}规格化即,令沙=明,广日价、这时,Besse】不等式取形式 艺比厂.汽)!落}一f’三,它比较容易记住.Bessel不等式以这种形式用少遏近沦、阮urier分析及正交多项式理论等.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条