1) Incomplete Cholesky conjugate gradient (ICCG) method
不完全Cholesky共轭梯度法
2) sparse storage mode
不完全的Cholesky共轭梯度法
3) ICCG(incomplete cholesky conjugate gradien) algorithm
不完全乔列斯基共轭梯度算法ICCG
4) incomplete Cholesky-conjugate gradient algorithm
不完全乔类斯基共轭梯度算法
5) shifted ICCG method
变位的不完全乔里斯基分解和共轭梯度法
1.
This technique,termed the shifted ICCG method,is then employed in the rigid visco plastic finite element method to solve the slab rolling problem.
作者将变位的不完全乔里斯基分解刚度矩阵和共轭梯度法相结合 ,即变位的不完全乔里斯基分解和共轭梯度法 (shiftedICCG法 ) ,求解速度增量方程 ,进而对板坯轧制过程进行刚粘塑性有限元分析。
6) ICCG
不完全乔莱斯基分解的预优共轭梯度法
1.
Nonlinear programming techniques,branch and bound algorithms and incomplete Cholesky decomposition conjugate gradient method (ICCG) are the three main parts of our work.
非线性优化技术、分枝定界算法和不完全乔莱斯基分解的预优共轭梯度法是该工作的三个主体部分 。
补充资料:共轭梯度法
又称共轭斜量法,是解线性代数方程组和非线性方程组的一种数值方法,例如对线性代数方程组
A尣=??, (1)式中A为n阶矩阵,尣和??为n维列向量,当A对称正定时,可以证明求(1)的解尣*和求二次泛函 (2)的极小值问题是等价的。此处(尣,у)表示向量尣和у的内积。由此,给定了初始向量尣,按某一方向去求(2)取极小值的点尣,就得到下一个迭代值尣,再由尣出发,求尣等等,这样来逼近尣*。若取求极小值的方向为F在尣(k=1,2,...)处的负梯度方向就是所谓最速下降法,然而理论和实际计算表明这个方法的收敛速度较慢,共轭梯度法则是在 尣处的梯度方向r和这一步的修正方向p所构成的二维平面内,寻找使F减小最快的方向作为下一步的修正方向,即求极小值的方向p(其第一步仍取负梯度方向)。计算公式为再逐次计算
(k=1,2,...)。可以证明当i≠j时,从而p,p形成一共轭向量组;r,r,...形成一正交向量组。后者说明若没有舍入误差的话,至多 n次迭代就可得到(1)的精确解。然而在实际计算中,一般都有舍入误差,所以r,r,...并不真正互相正交,而尣尣,...等也只是逐步逼近(1)的真解,故一般将共轭梯度法作为迭代法来使用。
近来在解方程组(1)时,常将共轭梯度法同其他一些迭代法结合作用。特别是对病态方程组这种方法往往能收到比较显著的效果。其方法是选取一对称正定矩阵 B并进行三角分解,得B=LLT。将方程组(1)化为
hу=b, (3)此处y=lT尣,b=l-1??,h=l-1Al-T,而。再对(3)用共轭梯度法,计算公式为
(k=0,1,2,...)适当选取B,当B 很接近A时,h的条件数较之A大大减小,从而可使共轭梯度法的收敛速度大为加快,由一些迭代法的矩阵分裂A=M -N,可选取M 为这里的B,例如对称超松弛迭代(SSOR),强隐式迭代(SIP)等,这类方法常称为广义共轭梯度法或预条件共轭梯度法,它也可用于解代数特征值问题。
参考书目
冯康等编:《数值计算方法》,国防工业出版社,北京,1978。
A尣=??, (1)式中A为n阶矩阵,尣和??为n维列向量,当A对称正定时,可以证明求(1)的解尣*和求二次泛函 (2)的极小值问题是等价的。此处(尣,у)表示向量尣和у的内积。由此,给定了初始向量尣,按某一方向去求(2)取极小值的点尣,就得到下一个迭代值尣,再由尣出发,求尣等等,这样来逼近尣*。若取求极小值的方向为F在尣(k=1,2,...)处的负梯度方向就是所谓最速下降法,然而理论和实际计算表明这个方法的收敛速度较慢,共轭梯度法则是在 尣处的梯度方向r和这一步的修正方向p所构成的二维平面内,寻找使F减小最快的方向作为下一步的修正方向,即求极小值的方向p(其第一步仍取负梯度方向)。计算公式为再逐次计算
(k=1,2,...)。可以证明当i≠j时,从而p,p形成一共轭向量组;r,r,...形成一正交向量组。后者说明若没有舍入误差的话,至多 n次迭代就可得到(1)的精确解。然而在实际计算中,一般都有舍入误差,所以r,r,...并不真正互相正交,而尣尣,...等也只是逐步逼近(1)的真解,故一般将共轭梯度法作为迭代法来使用。
近来在解方程组(1)时,常将共轭梯度法同其他一些迭代法结合作用。特别是对病态方程组这种方法往往能收到比较显著的效果。其方法是选取一对称正定矩阵 B并进行三角分解,得B=LLT。将方程组(1)化为
hу=b, (3)此处y=lT尣,b=l-1??,h=l-1Al-T,而。再对(3)用共轭梯度法,计算公式为
(k=0,1,2,...)适当选取B,当B 很接近A时,h的条件数较之A大大减小,从而可使共轭梯度法的收敛速度大为加快,由一些迭代法的矩阵分裂A=M -N,可选取M 为这里的B,例如对称超松弛迭代(SSOR),强隐式迭代(SIP)等,这类方法常称为广义共轭梯度法或预条件共轭梯度法,它也可用于解代数特征值问题。
参考书目
冯康等编:《数值计算方法》,国防工业出版社,北京,1978。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条