1) all elements effect Hamilton function
全元素作用哈密顿函数
2) interaction Hamiltonian
相互作用哈密顿函数
3) Hamiltonian function
哈密顿函数
1.
Hamiltonian functions of charged particles moving in the electric field,under below three conditions;nonrelativistic theory,relativistic theory and relativistic theory in the form of strain,have been provided.
带电粒子在电场中运动时,非相对论情况下,相对论情况下以及取协变形式的相对论情况下的哈密顿函
2.
The Schrdinger equation is given directly from the classical Hamiltonian function of a damping harmonic oscillator,and its solution is obtained by the separation of variables.
写出阻尼谐振子的哈密顿函数,对其直接量子化,用分离变量法得出了薛定谔方程的解。
3.
One functions and the algebraic conditions which can be regarded as constants of motion and Hamiltonian functions for a suitable Poisson structure of GLV systems are given.
给出了可作为具有相应Poissn结构的GLV系统的哈密顿函数和运动不变量的一类函数及代数条件。
5) Hamiltonian
[英][,hæmil'təuniən] [美][,hæmḷ'tonɪən]
哈密顿函数
1.
Based on a method author developed for solving KdV equation,the Lagrangian and Hamiltonian are expressed by trigonometric functions are given in this paper.
基于本文作者发展的求解KdV方程的方法 ,给出了KdV方程的拉格朗日函数、哈密顿函数的三角函数表达式 ,进而给出了KdV系统的动能和势能的三角函数表达式。
6) principal function
哈密顿作用