1) q-deformed
q-变形
2) Q-deformation
Q变形
1.
Generalized q-deformation coherent states of a non-harmonic oscillator in a finite-dimensional Hilbert Space are constructed.
构造了有限维希尔伯特空间q变形非简谐振子广义相干态,研究了它的振幅平方压缩效应,结果表明,该量子态存在振幅平方压缩效应,并且给出了压缩条件与参数s,r,q之间的关系。
2.
Odd generalized coherent states of q-deformation anharmonic oscillator in a finite-dimensional Hilbert space is constructed and its quantum properties are discussed.
构造了有限维希尔伯特空间q变形非简谐振子奇广义相干态,讨论该量子态的压缩效应和反聚束效应,结果表明该量子态存在压缩效应和反聚束效应,并给出量子效应出现的条件。
3) q-deformed
q变形
1.
The quantum statistical properties of a class of superposed q-deformed generalized coherent states;
一类q变形广义相干叠加态的量子统计性质
2.
It is shown that antiburching effect is possible in the superposition state β>+e iφβ iδ>of the generalized Coherent states of the q-deformed non-harmonic oscillator.
研究了q变形非简谐振子广义相干态的叠加态 β〉 +eiφ βiδ〉的反聚束效应 ,计算表明δ取值满足一定条件下呈现反聚束效应 。
4) q deformed
q变形
1.
Time-dependent equation of three dimensional isotropic q deformed oscillators are describes with double wave interpretation physics equation,the results show that movement of particle is nonlinear At the same time,when r→0,the theory reduces to the common three dimensional isotropic oscillator theor
利用双波函数理论描述三维各向同性 q变形振子力学量随时间的演化方程 ,结果显示粒子做非线性振动 。
2.
Using the theory of one dimensional q deformed oscillator,it is constructed the Hamiltonian operator of D dimensional q deformed oscillator,and work out its eigenvalues and eigenfunctions in coordinate representation.
把一维 q变形振子的结论推广到 D维 q变形振子体系 ,得到了 D维 q变形振子体系的哈密顿算符形式 ,并求出了其本征值和在坐标象中的本征函数 。
5) q-deformed harmonic oscillator
q变形振子
6) q-deformed algebras
q-变形代数
参考词条
sl(2)的q-变形
q变形SU(3)电荷
q变形Fermion振子
q-变形谐振子
q变形微分算子
q变形KdV方程
q变形Gelfand-Dikii势
q-变形JC模型
q变形Mandel Q参数
Q变形非简谐振子
任意维q变形带电振子
任意维q变形振子
q变形带电Fermion相干态
q变形玻色湮没算符
二维各向同性q变形振子
压弯镜
引书
补充资料:阿克伦德氏变形
[英文]:Akerlund deformity[解释]:十二指肠球部溃疡时,X线象上呈现切迹与壁龛的变化。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。