1) Globalism concept in quantum mechanics
量子力学的整体性概念
2) whole concept
整体概念
1.
Through introducing the meanings of concept teaching method and wide analysis on it in points of view of time concept,whole concept and co-operative course treatment,and how to apply this thought to concret
通过阐述概念教学法的含义,并从时间概念、整体概念、课程相互关系处理等角度进行分析,指出概念教学如何在混凝土结构课程中运用的教学思想。
3) Characteristics of mathematics concept
数学概念的特性
4) mechanics conception
力学概念
1.
Through three years teaching practice,a great improvement was achieved in training comprehension of mechanics conception,the basic skill of structural analysis,and innovation capability.
针对建筑类专业建筑力学课程特点和教学过程中存在的问题,以培养学生创新思维,为注册建筑师奠定力学基础为总体目标,探讨了此类课程的教学方法;通过3年的教学实践,在培养学生力学概念、结构分析的基本技能和提高学生的创新能力等方面得到了较大的提高。
5) concept of quantity
量的概念
1.
Establishing the concept of quantity in order to enhance the ratio of success in qualitative analysis experiments;
对学生在定性分析实验中存在的问题进行了分析 ,提出在定性分析实验中让学生建立量的概念 ,从而提高定性分析实验的成功
6) the concept of nature as an organic unity
有机整体的自然概念
补充资料:量子力学中的力学量和算符
在量子力学中,当微观粒子处于某一状态时,它的力学量(如坐标、动量、角动量、能量等)一般不具有确定的数值,而是具有一系列可能值,每个可能值以一定的几率出现。当粒子所处的状态确定时,力学量具有某一可能值的几率也就完全确定。例如,氢原子中的电子处于某一束缚态时,它的坐标和动量都没有确定值,而坐标具有某一确定值r0或动量具有某一确定值p0的几率却是完全确定的。量子力学中力学量的这些特点是经典力学中的力学量所没有的。为了反映这些特点,在量子力学中引进算符来表示力学量。
算符是对波函数进行某种数学运算的符号。在代表力学量的文字上加"∧"号以表示这个力学量的算符。如坐标算符、动量算符。当粒子的状态用波函数 Ψ(r,t)描写时,坐标算符对波函数的作用就是r乘 Ψ(r,t),动量算符对波函数的作用则是微分:
可简单地写为
其他有经典类比的力学量都是r和p的函数,在量子力学中也是算符和的相应的函数。例如粒子绕原点的角动量在经典力学中是L)=r×p,因而在量子力学中角动量算符是
。
又如,在势为U(r)的力场中运动的粒子能量算符(也称哈密顿算符)为
算符是对波函数进行某种数学运算的符号。在代表力学量的文字上加"∧"号以表示这个力学量的算符。如坐标算符、动量算符。当粒子的状态用波函数 Ψ(r,t)描写时,坐标算符对波函数的作用就是r乘 Ψ(r,t),动量算符对波函数的作用则是微分:
可简单地写为
其他有经典类比的力学量都是r和p的函数,在量子力学中也是算符和的相应的函数。例如粒子绕原点的角动量在经典力学中是L)=r×p,因而在量子力学中角动量算符是
。
又如,在势为U(r)的力场中运动的粒子能量算符(也称哈密顿算符)为
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条