1) K-super efficient solution
K-超有效解
2) Super efficient solution
超有效解
1.
Under the condition that the objective mapping is cone upper semicontinuous and cone quasiconvex, we prove the connectedness results of the set of super efficient solutions to multiobjective optimization with set-valued mapping.
本文研究集值映射多目标优化超有效解集的连通性,在目标映射为锥上半连续和 锥拟凸的条件下,证明了其超有效解集是连通的。
2.
In this paper, we study the connectedness of super efficient solution sets for set-valued mapping vector optimization in normed linear space.
本文研究赋范线性空间中集值映射向量优化问题超有效解集的连通性问题。
3.
In this paper, we introduce a concept of super efficient solution of the opti-mization problem for a set-valued mapping.
本文在局部凸空间中对集值映射最优化问题引入超有效解的概念。
3) ε-super efficient solution
ε-超有效解
1.
In locally convex linear topological spaces,the ε-super efficient solution for vector optimization with set-valued maps was introduced.
通过在局部凸拓扑线性空间中引进集值映射向量优化问题的ε-超有效解,在集值映射为内部锥类凸的假设下,利用凸集分离定理建立了关于ε-超有效解的标量化定理,并利用择一定理得到ε-Lagrange乘子定理。
2.
In this paper,we study the connectedness of ε-super efficient solution set of vector optimization set-value mapping in normed linear spaces.
研究了赋范线性空间中集值向量优化问题ε-超有效解集的连通性,并证明了目标映射为锥拟凸的向量优化问题的ε-超有效解集是连通的。
3.
This paper establishes and proves the saddle points and duality theorems for ε-super efficient solution of vector optimization with set-valued maps, under the assumption that the set-valued maps is nearly generalized cone-subconvexlike, by utilizing the scalarization and Lagrange multiplier theorem for ε-super efficient solution.
在集值映射是近似广义锥次似凸的假设下,利用ε-超有效解的标量化和Lagrange乘子定理,建立和证明了关于ε-超有效解的鞍点和对偶定理。
4) directed k-hypertree
有向k超树
5) K-wead efficient point
K-弱有效点
6) Soil available potasssium
土壤有效K
补充资料:超有效估计量
超有效估计量
upereffitient estimator $, hyperefficient estimator
超有效估计量f匀那曰re伍d印t巴血舀奴或h只尤肥伍cjentestilnator:cBepx,帅e俐Bu明o”eUKal 术语“超有效估计量序列”的通用简称,指比未知参数的相合最大似然估计量序列好(更有效)的、相合渐近正态估计量序列. 设X,,二x,是取值于样本空间(王,才,尸,)(口〔0)的随机变量.假设对于分布族{尸。},存在参数口的相合最大似然估计量J。一J。(x、,…,xn)的序列冲。}.其次,设{兀圣是参数口的渐近正态估计量瓦二兀(Xl,…,X,.)的序列.假如对于一切0〔0、有 、〔,,。。(工,一。),z、不共, 厂一1一fIL,-一‘·”I(的’其中I(的是F泪阮r信息量(Fisher~unt ofi刊陌~-tion),并且至少在一个点口‘(0“O),满足严格不等式 *。。.【n(兀一。·)2]<一早万,(.) I(口)则称序列{下,圣关于平方损失函数为超有效的(supe卜efficient),而使(*)式成立的点扩称为超有效点(pointof su详reffieiell卿)·
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条