1) reciprocity formula
互反公式
1.
The main purpose of this paper is using the Fourier expansion of the Bernoulli Polynomial to study the reciprocity formula of Dedekind sums and give a new and easiest proof for it.
利用Bernouli多项式的Fourier展开式给出著名的Dedekind和互反公式的一个新的并且最简单的证
2) Frobenius reciprocity formula
弗罗贝尼乌斯互反公式
3) completement in trans
反式互补
4) reciprocal polynomial
互反多项式
1.
For givenτ andη ,a method which decidesλ to satisfy trinomial is proposed, the acquisition of all trinomials of a m-sequence only depends on the reciprocal polynomial of the primitive polynomial which produces the m-sequence and the cyclotomic cosets mod pn-1.
无需给出 m序列,只需通过产生 m序列的本原多项式的互反多项式以及关于模 pn-1的分圆陪集就可以获得全部序列三项式。
5) cis-/trans-complementation
顺反式互补
6) reciprocal determinant
互反行列式
补充资料:互反
1.谓二字先按一般反切方法相切,然后颠倒相切,从而得出两字之音。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条