1) Intensity function
强率函数
2) strength utilization ratio function
强度利用率函数
1.
The thesis focuses on the investigation of application of tangent modulus factor and strength utilization ratio function (SURF)to solution of structural fracture strength problems.
利用切线模量因子和强度利用率函数的概念,建立了含裂纹结构的弹塑性临界断裂应力的切线模量因子算法(Φk法)。
2.
Strength utilization ratio function is a common solution about strength and stability probbms of steel structure under pressure.
强度利用率函数是承压钢结构的强度和稳定问题的通解,本文建议《钢结构设计规》(GRJ17-88)中的某些条款,亦可采用此强度利用率函数来统一表示。
3) hazard(intensity) function
风险率(强度)函数
4) reward function
强化函数
1.
A reward function for real traffic condition was proposed to control traffic dynamically and on real-time.
介绍了将经验知识与Q学习算法相结合实现的Agent学习机制,提出了一种适合交通环境的强化函数,以解决单路口的动态实时控制。
2.
The design of reward function is one of difficulties in building reinforcement learning system.
强化函数的设计是构建多智能体学习系统的一个难点。
3.
To improve the performance of the reinforcement learning method on multi-agent systems,thinking about the characteristic of Keepaway that always ended with failure,based on the reference of the reward function design pattern in the pole-balance system,a new punitive reward function is redesigned.
为了提高强化学习算法在多智能体系统中的性能表现,针对典型的多智能体系统-Keepaway平台总是以失败告终的特点,受与之有相同特点的单智能体系统杆平衡系统所采用强化函数的启发,重新设计一种新的惩罚式的强化函数。
5) strong convex function
强凸函数
1.
Here we discuss its properties basing on the definition of the strong pseudoconvex function,and give its relationship with strong convex function.
文中在给出强伪凸函数定义的基础上讨论了它的一些性质,另外还给出了它与强凸函数之间的关系。
6) strength function
强度函数
1.
A new simplified ductile spall model is presented using the redefined damage and the strength function given by Cochran-Banner.
重新定义损伤、应用Cochran-Banner模型中的强度函数,提出了一种新的简化延性层裂模型。
2.
The strength function given by Cochran-Banner was maintained using the redefined damage,and the correction concerning the volume of the mesh cells was realized considering it unnecessary to expect that it is much easier to open microcracks once they are formed than to strain the solid further.
这种新模型仅保留CochranBanner模型中的强度函数,重新定义损伤,并抛弃了基本假设:一旦微损伤形成,使微损伤演化远远易于使固体进一步体积应变,进而修正了差分微元中固体比容的计算。
补充资料:强率
1.勉强附和,勉强服从。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条