1) collecting and distributing function
![点击朗读](/dictall/images/read.gif)
集散函数
1.
This paper presents a discussion about the nature of tree graph collecting and distributing function and it s center.
本文讨论了树图的集散函数和集散中心的性质。
2) discrete set function
![点击朗读](/dictall/images/read.gif)
离散集函数
3) diffuse function
![点击朗读](/dictall/images/read.gif)
弥散函数
4) dispersion function
![点击朗读](/dictall/images/read.gif)
频散函数
1.
This paper first introduces the modified Anas Abo Zena's method for computation of surface waves dispersion functions, which is a stable algorithm at very high frequency and can be used to compute the dispersion curves for site investigation and non-intrusive diagnosis.
作者在本文中首先介绍了改进的AnasAbo Zena传递矩阵法[1 ] 面波频散函数的计算问题。
5) discrete functions
![点击朗读](/dictall/images/read.gif)
离散函数
1.
Some interpolation inequalities with the variable step of discrete functions;
![点击朗读](/dictall/images/read.gif)
关于变步长情形下离散函数的一些内插不等式
6) discrete function
![点击朗读](/dictall/images/read.gif)
离散函数
1.
Objective: Study the expression form of the discrete function of gray model.
![点击朗读](/dictall/images/read.gif)
目的:研究灰色模型离散函数的表达形式。
2.
In the paper, the criterion of the white exponential law of a discrete function is given after discussing the necessary and sufficient conditions of a continuous function being an exponential function.
在此基础上 ,给出了灰指数律判别方法 ,对于固定的分量增量 ,离散函数的实际熵趋于最大熵时 ,此离散函数具有灰指数律 。
补充资料:高斯函数模拟斯莱特函数
尽管斯莱特函数作为基函数在原子和分子的自洽场(SCF)计算中表现良好,但在较大分子的SCF计算中,多中心双电子积分计算极为复杂和耗时。使用高斯函数(GTO)则可使计算大大简化,但高斯函数远不如斯莱特函数(STO)更接近原子轨道的真实图象。为了兼具两者之优点,避两者之短,考虑到高斯函数是完备函数集合,可将STO向GTO展开:
式中X(ζS,A,nS,l,m)定义为在核A上,轨道指数为ζS,量子数为nS、l、m 的STO;g是GTO:
其变量与STO有相似的定义;Ngi是归一化常数:
rA是空间点相对于核A的距离;ci是组合系数;K是用以模拟STO的GTO个数(理论上,K→∞,但实践证明K只要取几个,便有很好的精确度)。
ci和ζ在固定K值下, 通过对原子或分子的 SCF能量计算加以优化。先优化出 ζS=1 时固定K值的ci和(i=1,2,...,K),然后利用标度关系式便可得出ζS的STO展开式中每一个GTO的轨道指数,而且,ci不依赖于ζS,因而ζS=1时的展开系数就是具有任意ζS的STO的展开系数。对不同展开长度下的展开系数和 GTO轨道指数已有表可查。
式中X(ζS,A,nS,l,m)定义为在核A上,轨道指数为ζS,量子数为nS、l、m 的STO;g是GTO:
其变量与STO有相似的定义;Ngi是归一化常数:
rA是空间点相对于核A的距离;ci是组合系数;K是用以模拟STO的GTO个数(理论上,K→∞,但实践证明K只要取几个,便有很好的精确度)。
ci和ζ在固定K值下, 通过对原子或分子的 SCF能量计算加以优化。先优化出 ζS=1 时固定K值的ci和(i=1,2,...,K),然后利用标度关系式便可得出ζS的STO展开式中每一个GTO的轨道指数,而且,ci不依赖于ζS,因而ζS=1时的展开系数就是具有任意ζS的STO的展开系数。对不同展开长度下的展开系数和 GTO轨道指数已有表可查。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条