|
说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
|
|
您的位置: 首页 -> 词典 -> Fuzzy幂集格
1) Fuzzy power set lattice
Fuzzy幂集格
1.
In this paper, Brouwer pseudo-complement in Fuzzy power set lattices is discussed, some properties of the pseudo-complement are established.
讨论Fuzzy幂集格■(X)中的Brouwer伪补的21种型式,并建立了这种伪补的若干性质。
2) pseudo-power set lattice
伪幂集格
1.
By introducing the concepts of new dual-set Fuzzy lattice and pseudo-power set lattice, we obtain two results that are natural representations of soft algebra and prove that they can′t be improved in a sense.
指出了软代数现行表示的非自然性;通过引入新的集对F格与伪幂集格,获得了两个自然的软代数表示定理,并证明了它们在某种意义上不可能再改进。
3) power set lattice
幂集格
1.
Based on in which the concept of the power lattice is given, this paper discusses relation between power lattice and power set lattice in some condition.
由幂格的定义知 ,幂格与幂集格是不同的 ,然而它们却有一定的联系 。
4) lattice interval value Fuzzy set
格区间值Fuzzy集
1.
The paper gives the definitions of some cut-set on 、(λ1,λ2]、[λ1,λ2)、(λ1,λ2) and a new operation of close interval and lattice interval value Fuzzy set and four decomposition theorems.
对格区间值Fuzzy集作了进一步的研究,分别给出了[λ1,λ2]、(λ1,λ2]、[λ1,λ2)、(λ1,λ2)上的下截集、上截集、下重截集和上重截集的新的定义及一种新的闭区间与格区间值Fuzzy集的运算,并给出了与此相应的四条重要的分解定理。
5) fuzzy power group
Fuzzy幂群
1.
The structures of fuzzy power groups and fuzzy quotient groups are discussed.
在文献[5]提出的Fuzzy幂群的基础上,对Fuzzy幂群与Fuzzy商群的结构进行了讨论,重点研究了二者之间的联系。
2.
In this paper,we will discuss the rationality of concept of fuzzy power groups, and research fuzzy power groups under much weaker conditions,and the most results with respect to quasi-fuzzy factor groups can be obtained when fuzzy monoid is weakened to idempotent fuzzy semi-group.
首先讨论了Fuzzy幂群定义的合理性,其次在更弱的条件下研究了拟Fuzzy商群及其同态关系,将Fuzzy幺半群降低为幂等Fuzzy半群,同样可以得到笔者以前所获的大部分结论。
3.
In the paper, the properties of mapping extension of homornorphism in ordinary groups are discussed ; and then, the homornorphism of fuzzy power groups, under this mapping extension, are studied in detail.
首先讨论了普通群上的同态映射的诱导映射(它是普通群上同态映射扩展成模糊幂集上的映射)的性质,然后详细地研究了在该诱导在射下Fuzzy幂群的同态关系。
6) fuzzy power series expansion
Fuzzy幂级数
1.
In this paper, the authors define the fuzzy power series expansion and discuss the fuzzy function expanding into fuzzy power series, moreover, the fuzzy power series expansion of a class of type LR fuzzy function is given.
引入一类Fuzzy幂级数 ,讨论了Fuzzy函数的Fuzzy幂级数的展开 ,进而讨论了一类LR型Fuzzy函数的展开。
补充资料:格奥格-奥古斯特-格丁根大学
格奥格-奥古斯特-格丁根大学(georg-august-universität göttingen),简称格丁根大学,位于德国西北部下萨克森州南端的大学城格丁根市,因英王乔治二世创建而得名。始建于1734年,于1737年向公众开放。 历史 始创 1734年时为英国国王及汉诺威大公的乔治二世决定委派其重臣冯·明希豪森在格丁根创办一所大学,旨在弘扬欧洲启蒙时代学术自由的理念,格丁根大学也因此一开欧洲大学学术自由之风气。大学创办之初,即设有神学、法学、哲学、医学四大经典学科,尤以自然科学和法学为重。 18-19世纪 整个18世纪,格丁根大学因其极为自由的科学探索精神和氛围而居于德国大学中心地位。到1812年学校已经发展成为具有图书藏量25万册,被海内外认可的一所现代化大学。拿破仑曾于此研习法律,并言“格丁根是属于全欧洲的”。 格丁根大学初以法学闻名于世。18世纪德国著名国家法学大师皮特曾于此执教半个世纪,而吸引了大批学生求学,奥地利首相克莱门斯·梅特涅,柏林大学的创办者威廉·冯·洪堡都是他的学生。至1837年其建校100年时,格丁根大学因几乎每年法学院注册的学生均占全校在读学生人数的一半以上而被称为“法科大学”。而格丁根大学也因此成为18世纪德国公法学的麦加。 1837年发生了著名的“格丁根七君子事件”,格丁根的七名教授因反对汉诺威国王废除宪法之举而被驱逐出格丁根大学,格林兄弟也在此列,这一事件反映出格丁根的知识份子对自由的热爱与捍卫宪法的勇气。此后,古斯塔夫·胡果和爱希霍恩于19世纪在此执教并成为德国历史法学派的先驱。19世纪末,创造“缔约过失责任”理论的著名民法学家鲁道夫·冯·耶林在此任教。 更让格丁根成为世人瞩目的科学中心的是其自然科学,尤其是数学。被称为“最重要的数学家”的高斯就于18世纪任教于此并开创了格丁根学派。此后,黎曼、狄利克雷和雅可比在代数、几何、数论和分析领域做出了贡献。到19世纪,著名数学家希尔伯特和克莱因更是吸引了大批数学家前往格丁根,从而使德国格丁根数学学派进入了全盛时期。到20世纪初,格丁根已成为无可争辩的世界数学中心和麦加圣地。 19世纪末-20世纪初 这一时期,格丁根大学在全欧乃至世界上的学术地位达到了顶峰。 45位诺贝尔奖得主曾在格丁根大学学习、任教或研究,其中大部分为物理和化学奖,其他为医学、和平及文学奖。不过因为大多数诺贝尔奖都是在20世纪上半叶获得的,其得主多已去世。在这半个世纪从这里走出的诺贝尔奖得主人数位居世界大学第八位,创造了“格丁根诺贝尔奇迹”。此外,德意志帝国时期的“铁血宰相”奥托·冯·俾斯麦,联邦德国前总统里夏德·冯·魏茨泽克及前总理格哈特·施罗德均曾于格丁根大学学习法律。德国大诗人海涅也在此取得法学博士。格林兄弟在此任教并编写了第一部德语词典。现象学大师埃德蒙德·胡塞尔在此任教,哲学家亚瑟·叔本华,社会学大师马克斯·韦伯与尤尔根·哈贝马斯等也先后求学于格丁根。 纳粹时期 1933年希特勒上台,对犹太人进行残酷迫害,格丁根大学也因此受到致命重创,大批知名的犹太籍科学家和学者被迫离开格丁根,去往美国。世界科学的中心立刻从德国转向了美国。 现状 2005年格丁根大学的在册学生人数近2万5千人,其中包括大学生24,398人和博士生643人。教授420名,教研人员共3千多人。它所属的医药学校下设19个中心,其中包括各种各样的诊所。自从1980年以来,该大学已经根据不同学科成立了14个院系。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条
|