1) fractional recursive progression
分式递推数列
1.
With matrix in higher mathematics,this article attempts to solve problems concerning fractional recursive progression and to find out the bonding point of matrix with fractional recursive progression.
以高等代数中矩阵为工具 ,解决分式递推数列问题 ,从而寻求到矩阵与分式递推数列的结合
2) recurson type sequence
递推式数列
3) fractional linear recursive series
分式线性递推数列
1.
Application of matrix theory to solving the general formula of fractional linear recursive series;
矩阵理论在求分式线性递推数列通项公式中的应用
4) linear fraction recurrence
线性分式递推数列
5) recurrence sequence
递推数列
1.
Deriving and application of general term formula of several kinds recurrence sequence;
几类递推数列通项公式的推导及应用
2.
The classification and relationship of recurrence sequences;
递推数列的分类及其相互关系
6) recursive sequence
递推数列
1.
On the limit of two kinds of recursive sequence;
关于两类递推数列的极限
2.
The general term formula of recursive sequence by applying matrax and integral method;
利用矩阵和积分求递推数列的通项公式
3.
This paper presents several special methods for obtaining the general term formulae of recursive sequences by examples.
递推数列是各类数学竞赛的热点之一。
补充资料:递归数列
递归数列 recursive sequence 一种用归纳方法给定的数列。例如,等比数列可以用归纳方法来定义,先定义第一项a1的值(a1≠0),对于以后的项,用递推公式an+1=qan(q≠0,n=1,2,…)给出定义。一般地,递归数列的前k项a1,a2,…,ak为已知数,从第k+1项起,由某一递推公式an+k=f(an,an+1,…,an+k-1)( n=1,2,…)所确定。k称为递归数列的阶数。例如 ,已知 a1=1,a2=1,其余各项由公式an+1=an+an-1(n=2,3,…)给定的数列是二阶递归数列。这是斐波那契数列,各项依次为 1,1,2,3,5,8,13,21,…,同样,由递归式an+1-an =an-an-1( a1,a2为已知,n=2,3,… ) 给定的数列,也是二阶递归数列,这是等差数列。 |
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条