说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 正则蕴涵格
1)  Regular Implication lattice
正则蕴涵格
2)  regular implication operator
正则蕴涵算子
1.
The properties of Triple I method based on the regular implication operator;
基于正则蕴涵算子的三I算法的性质
2.
The notions of conditional α-tautologies of formulas in the propositional logic systems based on regular implication operators are proposed.
在基于正则蕴涵算子的命题逻辑系统中给出了公式的条件α-重言式的概念,讨论了它们的性质,并分别在Lukasiew icz逻辑系统、Go¨del逻辑系统、乘积逻辑系统、L*逻辑系统及相应的n值逻辑系统中研究了条件α-重言式的分布。
3.
The concept of regular implication operators is introduced and it is proved that the Lukasiewicz operator, Gdel operator, product operator and R_0-operator are regular implication operations.
给出了正则蕴涵算子的概念,证明了Lukasiewicz算子、G del算子、乘积算子和R0 算子都是正则蕴涵算子。
3)  regular RL-type implication
正则RL型蕴涵
1.
The concepts of RL-type implication and regular RL-type implication are introduced.
引入了RL型蕴涵与正则RL型蕴涵的概念,系统地讨论了基于RL型蕴涵的三I算法、三IMT算法及其还原性,得到了这些算法的一般表达式,指出基于正则RL型蕴涵的三I算法与三IMT算法的表达式具有对偶形式;证明了当P表示条件{B(y)|y∈Y} {A(x)|x∈X}时,基于RL型蕴涵的三I算法为P 还原算法,当P表示条件{A(x)|x∈X} {B(y)|y∈Y}时,基于RL型蕴涵的三IMT算法为P 还原算法。
4)  Regular Fuzzy Implication Algebra
正则Fuzzy蕴涵代数
1.
Regular Fuzzy Implication Algebra;
正则Fuzzy蕴涵代数
2.
In this paper,the concept of ideal on regular Fuzzy implication algebras is introduced and some characterizations of ideals are given.
引入正则Fuzzy蕴涵代数的理想概念,并给出它的若干等价刻画;获得了由非空子集生成的理想的表示定理;证明了一个正则Fuzzy蕴涵代数上全体理想之集在集合包含序下构成一个分配连续格,从而构成一个Frame。
5)  Implication Rule
蕴涵规则
1.
The support degree and confidence degree of implication rule in th e evaluation itemset was abstracted from the concept lattice of inter-organizati on knowledge scatter.
在该方法中,首先依据组织内部知识分布的概念格提取评价项目集中蕴涵规则的支持度和可信度,然后利用关联函数对组织的知识分布进行评价。
2.
The problem of how to extract a complete and non-redundant set of implication rules of a context from the concept lattice in Formal Concept Analysis is studied in this paper.
对形式概念分析中如何从概念格提取出形式背景的完备的无冗余的蕴涵规则集进行了研究,从数学理论上证明了通过求出的概念格中的每个概念的真内涵缩减集可以得到形式背景的完备的蕴涵规则集,提出了如何再去除其中的冗余蕴涵得到形式背景的完备的无冗余的蕴涵集合的方法并从数学理论上证明了该方法的正确性,给出了一个从概念格得到形式背景的完备的无冗余的蕴涵规则集的算法。
6)  The regular fuzzy implication
关于正则蕴涵算子
补充资料:格奥格-奥古斯特-格丁根大学
格奥格-奥古斯特-格丁根大学
格奥格-奥古斯特-格丁根大学

格奥格-奥古斯特-格丁根大学(georg-august-universität göttingen),简称格丁根大学,位于德国西北部下萨克森州南端的大学城格丁根市,因英王乔治二世创建而得名。始建于1734年,于1737年向公众开放。

历史

始创

1734年时为英国国王及汉诺威大公的乔治二世决定委派其重臣冯·明希豪森在格丁根创办一所大学,旨在弘扬欧洲启蒙时代学术自由的理念,格丁根大学也因此一开欧洲大学学术自由之风气。大学创办之初,即设有神学、法学、哲学、医学四大经典学科,尤以自然科学和法学为重。

18-19世纪

整个18世纪,格丁根大学因其极为自由的科学探索精神和氛围而居于德国大学中心地位。到1812年学校已经发展成为具有图书藏量25万册,被海内外认可的一所现代化大学。拿破仑曾于此研习法律,并言“格丁根是属于全欧洲的”。

格丁根大学初以法学闻名于世。18世纪德国著名国家法学大师皮特曾于此执教半个世纪,而吸引了大批学生求学,奥地利首相克莱门斯·梅特涅,柏林大学的创办者威廉·冯·洪堡都是他的学生。至1837年其建校100年时,格丁根大学因几乎每年法学院注册的学生均占全校在读学生人数的一半以上而被称为“法科大学”。而格丁根大学也因此成为18世纪德国公法学的麦加。

1837年发生了著名的“格丁根七君子事件”,格丁根的七名教授因反对汉诺威国王废除宪法之举而被驱逐出格丁根大学,格林兄弟也在此列,这一事件反映出格丁根的知识份子对自由的热爱与捍卫宪法的勇气。此后,古斯塔夫·胡果和爱希霍恩于19世纪在此执教并成为德国历史法学派的先驱。19世纪末,创造“缔约过失责任”理论的著名民法学家鲁道夫·冯·耶林在此任教。

更让格丁根成为世人瞩目的科学中心的是其自然科学,尤其是数学。被称为“最重要的数学家”的高斯就于18世纪任教于此并开创了格丁根学派。此后,黎曼、狄利克雷和雅可比在代数、几何、数论和分析领域做出了贡献。到19世纪,著名数学家希尔伯特和克莱因更是吸引了大批数学家前往格丁根,从而使德国格丁根数学学派进入了全盛时期。到20世纪初,格丁根已成为无可争辩的世界数学中心和麦加圣地。

19世纪末-20世纪初

这一时期,格丁根大学在全欧乃至世界上的学术地位达到了顶峰。

45位诺贝尔奖得主曾在格丁根大学学习、任教或研究,其中大部分为物理和化学奖,其他为医学、和平及文学奖。不过因为大多数诺贝尔奖都是在20世纪上半叶获得的,其得主多已去世。在这半个世纪从这里走出的诺贝尔奖得主人数位居世界大学第八位,创造了“格丁根诺贝尔奇迹”。此外,德意志帝国时期的“铁血宰相”奥托·冯·俾斯麦,联邦德国前总统里夏德·冯·魏茨泽克及前总理格哈特·施罗德均曾于格丁根大学学习法律。德国大诗人海涅也在此取得法学博士。格林兄弟在此任教并编写了第一部德语词典。现象学大师埃德蒙德·胡塞尔在此任教,哲学家亚瑟·叔本华,社会学大师马克斯·韦伯与尤尔根·哈贝马斯等也先后求学于格丁根。

纳粹时期

1933年希特勒上台,对犹太人进行残酷迫害,格丁根大学也因此受到致命重创,大批知名的犹太籍科学家和学者被迫离开格丁根,去往美国。世界科学的中心立刻从德国转向了美国。

现状

2005年格丁根大学的在册学生人数近2万5千人,其中包括大学生24,398人和博士生643人。教授420名,教研人员共3千多人。它所属的医药学校下设19个中心,其中包括各种各样的诊所。自从1980年以来,该大学已经根据不同学科成立了14个院系。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条