1) Global and local C 2 solutions
整体与局部C~2解
3) partial and whole
局部与整体
1.
The manifestations between partial and whole relations are discussed, it has carried on the a-nalysis through the concrete instances to partial and the whole.
探讨了微积分中局部与整体关系的体现,并通过具体实例对局部与整体的关系进行了分析。
4) semi-global C~2 solution
半整体C~2解
1.
In the second part,as a basis of further study,we prove the existence and uniqueness of semi-global C~2 solution to general second order quasilinear hyperbolic equations,based on the theory of the semi-global C~1 solution to the mixed initial-boundary value problem for first order quasilinear hyperbolic systems.
第二部分,作为下一步研究精确边界能控性的基础,在一阶拟线性双曲组混合初边值问题半整体C~1解理论的基础上,对一般二阶拟线性双曲型方程建立半整体C~2解的理论。
5) The whole and parts relation
整体与局部关系
6) local and total response
局部与整体响应
补充资料:局部可解性
研究线性偏微分方程Pu=??在什么条件下局部有解存在。若P是常系数算子,则由基本解的存在而保证Pu=??一定局部有解。在变系数情况下,柯西-柯瓦列夫斯卡娅定理证明了很大一类解析的方程必然局部地有解析解存在。于是人们以为变系数线性偏微分方程也和常系数情况一样,只要不是过于"奇异",总是局部可解的。因此,当H.卢伊在1957年发现方程,在??仅只属于C∞而非解析的情况可以无解(甚至没有广义函数解)时,引起了很大的震动。从而提出了局部可解性问题。
局部可解性的一种定义是,方程Pu=??当??属于C∞(Rn)的某个余维数有限的子空间时,在Rn的某个紧集K附近恒有解u∈D′(Rn)存在,就说P在K中可解。这里P既可以是线性偏微分算子,也可以是拟微分算子。
20世纪60年代以来,许多数学家讨论过这个问题。设P的象征是复值函数 p(x,ξ)=Rep(x,ξ)+iImp(x,ξ)。一个重要的条件是
(Ψ):在Rn的开集U中不存在C∞(T*U-0)中的正齐性复值函数q(x,ξ)使Im(qp)沿着Re(qp)的次特征Г 的正方向由负值变号为正值,这里q(x,ξ)≠0(于Г上)。
所谓一个函数的次特征,指的是的积分曲线。所谓正方向是指t增加的方向。可以证明,条件(Ψ)是Pu=??在一点附近局部可解的必要条件;在某些情况下特别是主型算子情形也是充分条件。然而,在一般情况下,条件(Ψ)对于局部可解性是否是充分的仍未解决。
总之,局部可解性问题仍然是线性偏微分算子理论中尚未完全解决的重要问题。
局部可解性的一种定义是,方程Pu=??当??属于C∞(Rn)的某个余维数有限的子空间时,在Rn的某个紧集K附近恒有解u∈D′(Rn)存在,就说P在K中可解。这里P既可以是线性偏微分算子,也可以是拟微分算子。
20世纪60年代以来,许多数学家讨论过这个问题。设P的象征是复值函数 p(x,ξ)=Rep(x,ξ)+iImp(x,ξ)。一个重要的条件是
(Ψ):在Rn的开集U中不存在C∞(T*U-0)中的正齐性复值函数q(x,ξ)使Im(qp)沿着Re(qp)的次特征Г 的正方向由负值变号为正值,这里q(x,ξ)≠0(于Г上)。
所谓一个函数的次特征,指的是的积分曲线。所谓正方向是指t增加的方向。可以证明,条件(Ψ)是Pu=??在一点附近局部可解的必要条件;在某些情况下特别是主型算子情形也是充分条件。然而,在一般情况下,条件(Ψ)对于局部可解性是否是充分的仍未解决。
总之,局部可解性问题仍然是线性偏微分算子理论中尚未完全解决的重要问题。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条