1) Real riesz bases sequence
实Riesz基序列
2) Riesz-Fischer sequence
Riesz-Fischer序列
1.
On the Riesz-Fischer sequences;
关于Riesz-Fischer序列
2.
g-Riesz-Fischer sequences in Hilbert spaces;
Hilbert空间中的g-Riesz-Fischer序列
3) real Riesz basis
实Riesz基
1.
It is proved that if f∈PW π , then ‖s (k) 2m f-f (k) ‖ L p(R) →0 as m→∞,2<p≤∞,k=1,2,…, where PW π denotes the classical Paley Wiener class, s 2m f is the unique tempered spline of degree 2m-1 interpolating to f at real Riesz basis sequence.
证明了当 f∈PWπ时 ,‖s(k)2mf - f(k) ‖ Lp(R) → 0 (m→∞ ,2≤p≤∞ ,k =0 ,1,2 ,… ) ,其中PWπ是经典的Paley Wiener类 ,s2mf是在实Riesz基序列上对 f插值的唯一确定 2m - 1次缓增样条 。
4) g-Riesz-Fischer sequence
g-Riesz-Fischer序列
1.
g-Riesz-Fischer sequences in Hilbert spaces;
Hilbert空间中的g-Riesz-Fischer序列
5) riesz bases
Riesz基
1.
Riesz bases in L~2(0,1)~2 related to sampling in 2-dimenional wavelet subspace;
基于L~2(0,1)~2空间Riesz基的二维小波子空间采样定理
2.
Starting with a pair of compactly supported refinable functions φ and in L~2(R) satisfying a very mild condition,a general principle for constructing a wavelet ψ of dilation factor a is provided such that the wavelets ψ_(jk)=a~(j2)ψ(a~j·-k)(j,k∈Z) form a Riesz bases for L~2(R).
-k)(j,k∈Z)构成L2(R)的Riesz基,当φ属于Sobolev空间Hm(R)的时,导数aj2ψ(m)(aj。
3.
Let {x_n} be a Riesz bases of Banach space X and T:X→X be a linear homeomorphism and a bounded linear operator,if there exist M≥0,A>0,β≥0,that enableA>(βA+M)‖T‖,and {y_n} satisfies‖∑c_ny_n‖≤β‖∑c_nx_n‖+M‖c‖for any c={c_n}∈l~2,{x_n+T(y_n)} is also a Riesz base of X.
利用泛函分析中的线性同胚及有界线性算子理论,研究Banach空间中Riesz基的稳定性问题。
6) Riesz basis
Riesz基
1.
Riesz basis-based reproducing kernel and SVM;
基于Riesz基的再生核及支持向量机
2.
Another proof of discretion theorem on Riesz basis of space V 1=V 0W 0;
空间V_1=V_0+W_0的Riesz基判定定理的另一证明
3.
Design of controllers and compensators for a serially connected string system and its Riesz basis;
串联弦系统的控制器和补偿器的设计及其Riesz基
补充资料:Riesz基
Riesz基
Riesz basis
Riesz基1 Riesz加血;poeea 6a3oe] 见Rlesz函数系(Riesz哪tem).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条