1) Number strong connected component
强连通分支数
2) strongly connected components
强连通分支
1.
Also,the strongly connected components and strong connectedness of product spaces are studied.
在L-fuzzy拓扑空间中引入了强连通的概念,证明了强连通的一些基本性质,并研究了强连通分支和乘积拓扑空间的强连通性,得到了一些好的结果。
3) number of connected component
连通分支数
1.
Let n(G) and diam(Γ(G)) be the number of connected components and the diameter of Γ(G),respectively.
令n(G)和diam(Γ(G))分别表示Γ(G)的连通分支数和直径,证明了对任意有限群G,n(G)≤6和diam(Γ(G))≤6。
4) connected components
连通分支
1.
Algorithm for clustering gene expression data using connected components;
利用连通分支对基因表示数据的聚类算法
2.
This paper presents a new clustering method based on connected components that is to resolve the categorized problems of tanks status in industry production of aluminum electrolysis.
提出了一种基于连通分支的聚类分析算法,用以解决铝电解工业生产中槽况的分类问题。
3.
Moreover,propertities of connected matroids,including K Fan\'s theorem,and properties of connected components of matroids are studied in detail.
定义了拟阵的一种连通性,讨论了它与已有拟阵连通性之间的关系,并详细地研究了连通拟阵和连通分支的性质,包括樊畿定理。
5) component
[英][kəm'pəʊnənt] [美][kəm'ponənt]
连通分支
1.
On Components and Quasi-components;
拓朴空间的连通分支与拟分支
2.
R_m-edge cut is such an edge cut that separates a connected graph into a disconnected one with no component having order less than m.
Rm-边割是指能将阶不小于2m的连通图G分割为各连通分支的阶都不小于m的边割,其中m取正整数,文章证明了对阶为v的连通图G,若G的直径D(G)=2,且最大度Δ≤v-2,则对于任意的m≤v2,G存在Rm-边割。
3.
In this paper,the size and the structure of component of graphs are studied,and some results are obtained.
通过对图的连通分支的大小以及结构进行探讨,得到了若干新的结果。
6) connected component
连通分支
1.
The concepts of connected unascertained subset, the connectedness of unascertained topological space and connected component are introduced and some related theorems obtained.
给出连通未确知子集的定义和相关的定理 ;未确知拓扑空间连通性的定义和定理 ,以及连通分支的定义、定
2.
Moreover,propertities of connected pre-topology Spaces,including K Fan s Theorem,and properties of connected components of pre-topology Spaces are studied in detail.
本文定义了预拓扑空间的连通性并给出了它的若干等价刻画,讨论了连通性的一些性质,得出了预拓扑空间的连通性是连续不变性质,最后定义了连通分支,并研究了它的一些性质(包括樊畿定理)。
3.
This paper give a method of judging whether addition of edge make up cycles by giving every vertex a connected component No.
通过给网络G的每一个顶点赋予一个所在连通分支编号的方法 ,来判定每条边的加入是否构成圈 ,讨论了Kruskal算法中判定圈的新途径 ,给出了Kruskal算法的一种新的实现方
补充资料:单连通和多(复)连通超导体(simplyandmultiplyconnectedsuperconductors)
单连通和多(复)连通超导体(simplyandmultiplyconnectedsuperconductors)
单连通超导体一般指的是不包含有非超导绝缘物质或空腔贯通的整块同质超导体,若有非超导绝缘物质或空腔贯通的超导体则称为多(复)连通超导体。从几何学上讲,在超导体外表面所包围的体积内任取一曲线回路,这回路在超导物质内可收缩到零(或点),且所取的任意回路均可收缩到零而无例外,则称单连通超导体。若有例外,即不能收缩到零,则称多连通超导体。例如空心超导圆柱体,则在围绕柱空腔周围取一回路就不能收缩为零。多连通超导体可有磁通量子化现象(见“磁通量子化”)。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条