1) almost simultaneous uniquely remotel set
几乎同时唯一远达子集
1.
Under the Hausorff metric of sets,we define the concept of almost simultaneous uniquely remotel set with respect to bounded subsets.
在集合的Hausdorff距离下,引进了有界集空间中的几乎同时唯一远达了集的概念,证明了各向一致凸(自反局部一致凸)Banach空间中的任何有界闭子集都是关于有界凸集(紧凸集)的几乎同时唯一远达子集,从而使M·Edelstein定理、E·Asplund定理在集合空间得到了多元推广。
2) strongly almost K-uniqueness farthest point set
强几乎K惟一远达集
3) almost uniquely pancyclic graphs
几乎唯一泛圈图
1.
If there exists m(3≤m<n) such that G contains exactly one cycle of length l for every l∈{3,4,… , n} - {m} and contains no cycle of length m, then G is called almost uniquely pancyclic graphs.
设G是阶为n的简单Hamilton图,若存在m(3≤m<n)使对每个l∈{3,4,…,n}-{m},G恰有一个长为l的圈且不含长为m的圈,则称G是几乎唯一泛圈图。
4) almost uniquely pancyclic graph
几乎唯一泛圈图
1.
If there exists m(3mn) such that G contains exactly one cycle of length l for every l∈{3,4,…,n}-{m} and contains no cycle of length of m,then G is called almost uniquely pancyclic graph.
若存在m(3(?)m<n)使对每个l∈{3,4,…,n} -{m},G恰有一个长为l的圈且不含长为m的圈,则称G是几乎唯一泛圈图,用(?)k表示具有n+k条边和恰有1/2(k+1)(k+2)个圈的简单H图的集合,用(?)_k~*表示具有n+k条边恰有2~k+k个圈的简单外可平面H图的集合,本文确定了(?)_k和(?)_k~*中所有几乎唯一泛圈图,并证明这些图都是简单MCD图,本文还构造了50个含有同胚于K_4的子图的几乎唯一泛圈图,并提出了若干问题和猜想。
2.
If there exists m(3(?)m<n) such that G contains exactly one cycle of length l for every l∈{3,4,…n}-{m} and contains no cycle of length of m; then G is called almost uniquely pancyclic graph.
若存在m(3(?)m
5) sub-almost uniquely pancyclic graph
亚几乎唯一泛圈图
1.
then G is called sub-almost uniquely pancyclic graph.
设G是阶为n的简单Hamilton图,若存在不同的p,q(3≤p
6) almost unchangalbe subset
几乎不变子集
补充资料:远达
1.犹言飞黄腾达。 2.高远豁达。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条