2) aperiodic structure
非周期结构
1.
We use one aperiodic structure optical superlattice to achieve the output of multi-wavelength second harmonic generation for Ti:sapphire pumping ps-OPA Laser.
介绍了在同一块非周期结构的LiTaO3 光学超晶格中 ,直接对皮秒掺钛蓝宝石泵浦的多波长参量激光器输出的脉冲激光倍频 ,实现了从可见光到红外光的倍频激光输出 ,其最大光—光转换效率达到 90 %。
3) Nonperiodic defected ground struc-tures (NPDGS)
非周期性缺陷接地结构
4) periodic structure
周期性结构
1.
Research on phononic crystals of periodic structure is a novel task.
声子晶体的研究是振动与噪声控制研究的新课题,文章重点介绍国内外声子晶体的研究现状,分析周期性结构声子晶体研究存在的问题,提出周期性结构声子晶体研究及其应用研究的未来发展方向。
2.
In this paper,it is presented how to use FDTD to analyze the electromagnetic characteristic of the planar periodic structures.
FDTD方法与周期性边界条件、吸收边界条件结合 ,构成分析各种周期性结构电磁特性准确、有效的通用工具 。
3.
The frequency characteristics of band-pass(band-stop)is theoretically analyzed which caused by the periodic structure of the meshed ground plane.
本文主要基于实验研究,并结合三维全波电磁和电路系统仿真在频域和时域对高速多层PCB板中网孔状接地层或电源层上高速互连的信号完整性性能进行了测试和仿真分析,并对网孔状地参考面的周期性结构所呈现的频率带通(带阻)特性进行了理论分析。
5) periodic structures
周期性结构
1.
In the AWE technique, the induced currents of the periodic structures at any frequency within the frequency band can then be obtained from the induced currents of frequency derivative at given frequency via the Pade approximation, then the broadband characteristics of EM induced currents can be fast calculated.
采用MOM法将周期结构的电场积分方程转化为关于感应电流的矩阵方程和频率导数矩阵方程 ,并根据Pade逼近理论由给定频率处的频率导数感应电流确定周期性结构在任一频率入射波照射下的感应电流 ,进而计算周期性结构的电磁感应电流宽带特性。
2.
Many parameters of the periodic structures will greatly affect the resonant frequency,including the shapes and sizes.
在周期性结构的左手材料中影响响应频段的因素很多,例如周期性结构的单元形状、单元尺寸等等。
6) quasi-periodic quasi-structure
非周期-类结构
补充资料:半导体非线性光学材料
半导体非线性光学材料
semiconductor nonlinear optical materials
载流子传输非线性:载流子运动改变了内电场,从而导致材料折射率改变的二次非线性效应。④热致非线性:半导体材料热效应使半导体升温,导致禁带宽度变窄、吸收边红移和吸收系数变化而引起折射率变化的效应。此外,极性半导体材料大都具有很强的二次非线性极化率和较宽的红外透光波段,可以作为红外激光的倍频、电光和声光材料。 在量子阱或超晶格材料中,载流子的运动一维限制使之产生量子尺寸效应,使载流子能态分布量子化,并产生强烈的二维激子效应。该二维体系材料中激子束缚能可达体材料的4倍,因此在室温就能表现出与激子有关的光学非线性。此外,外加电场很容易引起量子能态的显著变化,从而产生如量子限制斯塔克效应等独特的光学非线性效应。特别是一些11一VI族半导体,如Znse/ZnS超晶格中激子束缚能非常高,与GaAs/AIGaAs等m一V族超晶格相比,其激子的光学非线性可以得到更广泛的应用。 半导体量子阱、超晶格器件具有耗能低、适用性强、集成度高和速度快等优点,以及系统性强和并行处理的特点。因此有希望制作成光电子技术中光电集成器件,如各种光调制器、光开关、相位调制器、光双稳器件及复合功能的激光器件和光探测器等。 种类半导体非线性光学材料主要有以下4种。 ①111一V族半导体块材料:GaAs、InP、Gasb等为窄禁带半导体,吸收边在近红外区。 ②n一巩族半导体量子阱超晶格材料:HgTe、CdTe等为窄禁带半导体,禁带宽度接近零;Znse、ZnS等为宽禁带半导体,吸收带边在蓝绿光波段。Znse/ZnS、ZnMnse/ZnS等为蓝绿光波段非线性光学材料。 ③111一V族半导体量子阱超晶格材料:有GaAs/AIGaAs、GalnAs/AllnAs、GalnAs/InP、GalnAs/GaAssb、GalnP/GaAs。根据两种材料能带排列情况,将超晶格分为I型(跨立型)、n型(破隙型)、llA型(错开型)3种。 现状和发展超晶格的概念是1969年日本科学家江崎玲放奈和华裔科学家朱兆祥提出的。其二维量子阱中基态自由激子的非线性吸收、非线性折射及有关的电场效应是目前非线性集成光学的重要元件。其制备工艺都采用先进的外延技术完成。如分子束外延(MBE)、金属有机化学气相沉积(MOCVD或MOVPE)、化学束外延(CBE)、金属有机分子束外延(MOMBD、气体源分子束外延(GSMBE)、原子层外延(ALE)等技术,能够满足高精度的组分和原子级厚度控制的要求,适合制作异质界面清晰的外延材料。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条