1) anomaly of mixed layer depth
混合层深度异常
2) mixing zone depth
混合层深度
1.
Review on the mixing zone depth of rainfall—runoff—soil interaction;
降雨-径流-土壤混合层深度研究进展
2.
The soil chemicals involved in lossby surface runoff only exist in certain soil horizons, the depth of which is named as mixing zone depth ofinteraction among rainfall, runoff and soil chemical.
降雨—径流—土壤化学物质混合层深度(简称混合层深度)定义为能够参与地表径流迁移的化学物质存在的土层厚度,对模拟坡面土壤化学物质随径流迁移过程、揭示农业非点源污染机理和提高土壤肥料利用率都有重要作用。
3) mixed layer depth
混合层深度
1.
Based on the Argo float profile data observed in the tropical Indian Ocean(north of 30°S) in 2004 and 2005,the mixed layer depth(MLD) in the tropical Indian Ocean is determined according to the potential density criteria(Δσθ=0.
03 kg/m3),针对每个Argo浮标的温度-盐度观测剖面确定了海洋混合层的深度,然后采用Krig插值方法构建了3°×3°空间分辨率的月平均网格化混合层深度产品。
2.
Based on the observed data during 11 survey cruises in the Nanshan Islands sea area,the seasonal variabilities in mixed layer depth in the sea area were studied.
基于南沙群岛海域综合科学考察11个航次的实测资料,研究了南沙群岛海域的混合层深度季节变化特征。
3.
The results also indicate that the extended model can reproduce the short timescale variations of the mixed layer depth due to the effects of the penetration radiation.
文章针对目前海洋分层模式中确定混合层深度方法的不足,利用最新发展的描述穿透性太阳短波辐射的经验公式,提出了一种易于在海洋分层模式中应用的一维时变混合层模式。
4) mixed layer thickness of temperature
温度混合层深度
5) upper mixed layer depth
上混合层深度
1.
Estimation of ocean upper mixed layer depth using artificial neural network;
人工神经网络方法估算海洋上混合层深度的初步研究
6) mixed layer depth(MLD)
混合层深度(MLD)
补充资料:上混合层卷吸作用
海洋上混合层(处于湍流混合状态的表层)中的湍涡接触到下层海水时,将后者卷吸到上混合层中去的作用。这种作用发生在低纬度和中纬度的大部分海域中,其表层海水温暖,下层水温较低。由于下层海水频频被卷吸到上混合层中去,使上混合层不断增厚。
太阳的热量通过海-气界面源源不断地输入海洋,若海洋处于宁静的理想状态,海水的温度理应从上到下逐渐降低,海水的密度则从上到下逐渐增加。但是海上的风不断搅拌上层海水,从而形成海洋上混合层,其中海水的密度沿铅直方向的分布比较均匀,但是在上混合层底部,有一个密度随深度的增加而突然变大的跃层,只要海面继续吹风,上混合层中的卷吸作用就延续下去,上述跃层就逐渐向深处移动,其中的密度梯度也不断增大,直到风浪平息或者达到统计平衡状态时为止。
海洋上混合层与埃克曼漂流的埃克曼层不同:前者一方面决定于现场的风的历史,另一方面决定于混合层下面的水体的稳定度和热量平衡;后者只由观测期间的现场的风所决定。埃克曼层的深度通常小于上混合层的深度。
在有上升流的海域,由于等密度面的倾斜,加强了上混合层的卷吸作用,因此上升流将营养物质输送到上层中去的效应,不只是上升流本身的铅直运动,而且是卷吸作用加强了的结果。
卷吸在海洋热盐环流中也起着重要的作用。例如极地海区的表层水受冷下沉为底层水或深层水之后,逐渐铺展开来并向低纬度海区移动,然后在低纬度海区上升。这种上升的速度本来很小,但由于卷吸作用,会使深层冷水的上升速度增大,穿越了温跃层而进入上混合层,在那里受热而升温,然后从上层返回极地,形成了热盐环流。
参考书目
O.M.Phillips,The Dynamics of Upper Ocean, Cambridge Univ. Press,New York,1980.
太阳的热量通过海-气界面源源不断地输入海洋,若海洋处于宁静的理想状态,海水的温度理应从上到下逐渐降低,海水的密度则从上到下逐渐增加。但是海上的风不断搅拌上层海水,从而形成海洋上混合层,其中海水的密度沿铅直方向的分布比较均匀,但是在上混合层底部,有一个密度随深度的增加而突然变大的跃层,只要海面继续吹风,上混合层中的卷吸作用就延续下去,上述跃层就逐渐向深处移动,其中的密度梯度也不断增大,直到风浪平息或者达到统计平衡状态时为止。
海洋上混合层与埃克曼漂流的埃克曼层不同:前者一方面决定于现场的风的历史,另一方面决定于混合层下面的水体的稳定度和热量平衡;后者只由观测期间的现场的风所决定。埃克曼层的深度通常小于上混合层的深度。
在有上升流的海域,由于等密度面的倾斜,加强了上混合层的卷吸作用,因此上升流将营养物质输送到上层中去的效应,不只是上升流本身的铅直运动,而且是卷吸作用加强了的结果。
卷吸在海洋热盐环流中也起着重要的作用。例如极地海区的表层水受冷下沉为底层水或深层水之后,逐渐铺展开来并向低纬度海区移动,然后在低纬度海区上升。这种上升的速度本来很小,但由于卷吸作用,会使深层冷水的上升速度增大,穿越了温跃层而进入上混合层,在那里受热而升温,然后从上层返回极地,形成了热盐环流。
参考书目
O.M.Phillips,The Dynamics of Upper Ocean, Cambridge Univ. Press,New York,1980.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条