说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 奥高定理
1)  Ostrogradski-Gaussian Theorem
奥高定理
2)  Biot-SaUart Principle
毕奥萨瓦定理
1.
the permalloy magnetoresistance sensor is introduced,measuring the magnetic field in Helmhotz ceil,Biot-SaUart Principl
介绍一种新型玻莫合金磁阻传感器 ,利用玻莫合金磁阻传感器测量弱电流下的亥姆霍兹线圈磁场分布和验证毕奥萨瓦定理。
3)  coriolis theorem
科里奥利定理
4)  Aumann-Perles theorem
奥曼-柏雷定理
5)  Gauss theorem
高斯定理
1.
Inquiring into applying Gauss theorem to working out the distributed electric field;
用高斯定理求解电场分布的深入探讨
2.
Discussion on electric-field intensity with electrostatic field Gauss theorem and magnetic field intensity with magnetic field loop law;
用静电场高斯定理求电场强度和磁场环路定律求磁场强度的讨论
3.
Son experience on teaching Gauss theorem;
高斯定理教学中的几点体会
6)  Gauss law
高斯定理
1.
This paper is intended to discuss the fact that the electromagnetic field S space symmetry is the essential condition for finding the solution to the electrostatic and static magnetic fielde E、B by the direct use of Gauss law and Ampere s circuital law.
本文叙述了电磁场空间对称性是直接用高斯定理及安培环路定理求解静电,磁场中E、B的必要条件。
2.
Do sum up four types using Gauss law to solute the Field strength problems by typical instances.
通过典型例题,归纳出用高斯定理求解场强问题的四种类型。
补充资料:函数逼近,正定理和逆定理


函数逼近,正定理和逆定理
approximation of functions, direct and inverse theorems

  函数逼近,正定理和逆定理〔叩p川心m丽皿of加n比拙,山比Ct and inve瑰the.陀ms;.聊痴叫的日.此中加.欲浦、娜旧M“el.倾阵I‘eT印碑袖I」 描述被逼近函数的差分微分性质与各种方法产生的逼近误差量(及其特征)之间关系的定理和不等式.正定理借助于函数f的光滑性质(具有给定的各阶导数,f或其某些导数的连续模等),给出f的逼近误差估计.利用多项式进行最佳逼近时,Jaekson型定理及其多种推广均是众所周知的正定理,见J以滋s佣不等式(J ackson inequality)和Ja改涨扣定理(Jackson theo-化m).逆定理则是根据最佳逼近或任何其他类型逼近的误差趋于零的速度来刻画函数的微分差分性质.5.N.Bernste几首次提出并在某些场合下解决了函数逼近中的逆定理问题,见[21,比较正逆定理,有时就可以利用,例如,最佳逼近序列来完全刻画具有某种光滑性质的函数类. 周期情形下正逆定理之间的关系最为明显.令C为整个实轴上周期为2二的连续函数空间,其范数定义为}}训:m。‘加川. 趁、 石(户7丁),nf}{厂甲1}、 价任了。为至多。次的允多项J处J’‘“间l对矛中函数f的最不}遍近,。仃一川记二厂的连续模,产r(产一12一)是若;,,I率个实轴上·次连续。f微的函数集‘户,二矛);卜定理f山。‘c、,the(〕re,1”J片出如果.了。厂、则 M{_‘l 从“,,蕊奋一“甲’、万 月l、2、、厂幼,!_.少川1常数M,。。一。又.「JJ以构造矛。‘;矛中函数八,)相关的多项式序列织(_人t):不使得对产三乙,(l)的右端.叮作为误差卜厂一仁〔户一的}界,这是较(I)更强的结果.1兰定理(,n、。r、。the‘)rem)指日:对,。矛勿J果 可。,、M了岁E“,;;),。、二 月二】(其,「,阿是绝对常数l}了司是l厂户的整数部分)日一对某个i「一整数r‘级数 艺。r一’E以讯一1) 月二1收敛.则可推得了‘〔’‘类似戈2)田(/、),l/。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条