1) electronic synchronism
电子同步
2) synchronizing valve
同步电子管
3) synchrotron photoemission spectroscopy(SRPES)
同步光电子能谱
1.
The effect of passivation with NH_4F/H_2O_2 agent on p-CZT surface is studied by synchrotron photoemission spectroscopy(SRPES).
用同步光电子能谱研究了NH4F/H2O2钝化p-CZT表面效应,钝化处理晶体表面后,表面态能峰消失。
4) electron synchrotron
电子同步加速器
5) synchronous electronic sampler
同步电子采样机
6) synchronous electronic switch
同步电子开关
补充资料:电子同步加速器
在一定的环形轨道上用固定频率的高频电场加速电子的装置。
这种加速器是根据1944到1945年间Β.И.韦克斯勒和E.M.麦克米伦各自独立发现的粒子自动稳相原理(见同步回旋加速器)发展起来的。1947年美国建成第一台,随后各国陆续建造了能量为几十至几百兆电子伏的电子同步加速器。初期建造的电子同步加速器都属于弱聚焦型。1952年强聚焦原理受到重视,从此以后建造的高能(能量高于1GeV)电子同步加速器一般都采用强聚焦原理。
下图是电子同步加速器的示意图。整个磁铁系统是由许多块C 形磁铁节组成的环形结构,用以产生控制电子运动轨道的磁场。在磁铁气隙中放置着环形真空盒,盒内装有谐振腔或加速电极,由高频发生器激励产生固定频率的高频电场,用来加速电子。大型电子同步加速器的磁铁系统一般分成几个圆弧段,圆弧段之间用直线段相连接;在直线段里放置加速设备、注入设备和引出设备等。
在电子同步加速器中,电子轨道的曲率半径为,
式中ε(t)是电子的总能量,Bo(t)是电子轨道上的磁感应强度,e是电子的电荷。由此可见,要使电子轨道半径ro保持恒定,在电子能量ε(t)随时间增加时,轨道磁感应强度 Bo(t)必须同步地增长。由于电子的静止质量很小,在能量不很大(约2MeV以上)时,速度就已接近光速;能量再提高时,其速度变化很小(质量增加了)。因而,这些电子在恒定轨道上回转的周期To基本上不变;即,
式中v是电子的速度,с是光速。所以在电子同步加速器中,高频加速电场的频率不必调变,可以是恒定值;只要与电子在平衡轨道上的回转频率相同或成整数倍,就能保证谐振加速。
为了使进入同步加速器的电子的初速度接近于光速,一般采用感应加速器启动方式或注入器方式。前一种方法,是在轨道内侧磁轭上设置特殊的磁通棒(见图)起动时,先按电子感应加速器原理工作;当电子速度接近光速时,改变加速方法,开始加上高频加速电压,使其过渡到同步加速状态。后一种方法,是利用高压型电子加速器或低能电子直线加速器,把电子预加速到一定能量后注入到同步加速器里;一般在高能电子同步加速器上采用这种方法。
电子同步加速器的工作状态是脉冲式的。当轨道磁感应强度增长到最大值时,被加速电子的能量也达到最大值,这时加速过程结束。以后轨道磁感应强度下降,恢复到初始值,然后进行下一个加速脉冲。因此射线输出也是脉冲式的,重复频率决定于磁场变化的周期,一般为每秒10~60脉冲。
当电子作圆周运动时,由于一直受到向心力作用,会产生电磁辐射。这种电磁辐射对高能同步加速器来说是进一步提高能量的主要障碍之一。但是,当电子速度接近光速时,由于相对论效应,其辐射的角分布集中于电子轨道的切线方向,而且具有极其优越的光源特性。这种现象是40年代在电子同步加速器上发现的,通常称为同步加速器辐射,简称同步辐射或同步光。
目前,几乎所有已建成的高能电子同步加速器,都兼起产生同步辐射的作用,有的已改成专为产生同步辐射的电子储存环。这种装置有的叫做光子工厂。
同步辐射具有许多优点:①具有从红外线到硬X射线广泛范围内的光滑连续谱。如使用单色器,可获得一定波长的单色光。②辐射强度高,一个储存环的辐射总功率常在数千瓦以上。③天然准直性好,其发散度一般小于1毫弧度。④辐射亮度高,一般比X射线转靶的标识辐射亮度高104倍,比连续轫致辐射亮度高107倍。⑤具有天然的偏振性。在轨道平面上是完全偏振光,其电矢量平行于轨道平面。⑥洁净度很高。因同步辐射是自由电子发光的,不产生其他粒子本底。⑦可实现脉冲化,脉宽可达 0.01~1纳秒或更短。⑧光通量、能量分布及偏振度等均可准确计算,并和实验值很好地相符合,因此可做为标准光源。
电子同步加速器多用于光核反应和介子物理等方面的研究。同步辐射装置作为性能良好的新型光源,在原子、分子物理、固体物理、表面物理、天体物理、化学、生物学、医学、环境科学、能源科学、材料科学、光刻技术、显微技术和光学标准计量等等许多科学技术领域里,得到越来越广泛的应用。
参考书目
徐建铭编著:《加速器原理》,修订版,科学出版社,北京,1981。
M. S. Livingston and J. P. Blewett, particle Accelerators,McGraw-Hill, New York, 1962.
熊谷寬夫等著:《加速器》,共立出版,東京,1975。
这种加速器是根据1944到1945年间Β.И.韦克斯勒和E.M.麦克米伦各自独立发现的粒子自动稳相原理(见同步回旋加速器)发展起来的。1947年美国建成第一台,随后各国陆续建造了能量为几十至几百兆电子伏的电子同步加速器。初期建造的电子同步加速器都属于弱聚焦型。1952年强聚焦原理受到重视,从此以后建造的高能(能量高于1GeV)电子同步加速器一般都采用强聚焦原理。
下图是电子同步加速器的示意图。整个磁铁系统是由许多块C 形磁铁节组成的环形结构,用以产生控制电子运动轨道的磁场。在磁铁气隙中放置着环形真空盒,盒内装有谐振腔或加速电极,由高频发生器激励产生固定频率的高频电场,用来加速电子。大型电子同步加速器的磁铁系统一般分成几个圆弧段,圆弧段之间用直线段相连接;在直线段里放置加速设备、注入设备和引出设备等。
在电子同步加速器中,电子轨道的曲率半径为,
式中ε(t)是电子的总能量,Bo(t)是电子轨道上的磁感应强度,e是电子的电荷。由此可见,要使电子轨道半径ro保持恒定,在电子能量ε(t)随时间增加时,轨道磁感应强度 Bo(t)必须同步地增长。由于电子的静止质量很小,在能量不很大(约2MeV以上)时,速度就已接近光速;能量再提高时,其速度变化很小(质量增加了)。因而,这些电子在恒定轨道上回转的周期To基本上不变;即,
式中v是电子的速度,с是光速。所以在电子同步加速器中,高频加速电场的频率不必调变,可以是恒定值;只要与电子在平衡轨道上的回转频率相同或成整数倍,就能保证谐振加速。
为了使进入同步加速器的电子的初速度接近于光速,一般采用感应加速器启动方式或注入器方式。前一种方法,是在轨道内侧磁轭上设置特殊的磁通棒(见图)起动时,先按电子感应加速器原理工作;当电子速度接近光速时,改变加速方法,开始加上高频加速电压,使其过渡到同步加速状态。后一种方法,是利用高压型电子加速器或低能电子直线加速器,把电子预加速到一定能量后注入到同步加速器里;一般在高能电子同步加速器上采用这种方法。
电子同步加速器的工作状态是脉冲式的。当轨道磁感应强度增长到最大值时,被加速电子的能量也达到最大值,这时加速过程结束。以后轨道磁感应强度下降,恢复到初始值,然后进行下一个加速脉冲。因此射线输出也是脉冲式的,重复频率决定于磁场变化的周期,一般为每秒10~60脉冲。
当电子作圆周运动时,由于一直受到向心力作用,会产生电磁辐射。这种电磁辐射对高能同步加速器来说是进一步提高能量的主要障碍之一。但是,当电子速度接近光速时,由于相对论效应,其辐射的角分布集中于电子轨道的切线方向,而且具有极其优越的光源特性。这种现象是40年代在电子同步加速器上发现的,通常称为同步加速器辐射,简称同步辐射或同步光。
目前,几乎所有已建成的高能电子同步加速器,都兼起产生同步辐射的作用,有的已改成专为产生同步辐射的电子储存环。这种装置有的叫做光子工厂。
同步辐射具有许多优点:①具有从红外线到硬X射线广泛范围内的光滑连续谱。如使用单色器,可获得一定波长的单色光。②辐射强度高,一个储存环的辐射总功率常在数千瓦以上。③天然准直性好,其发散度一般小于1毫弧度。④辐射亮度高,一般比X射线转靶的标识辐射亮度高104倍,比连续轫致辐射亮度高107倍。⑤具有天然的偏振性。在轨道平面上是完全偏振光,其电矢量平行于轨道平面。⑥洁净度很高。因同步辐射是自由电子发光的,不产生其他粒子本底。⑦可实现脉冲化,脉宽可达 0.01~1纳秒或更短。⑧光通量、能量分布及偏振度等均可准确计算,并和实验值很好地相符合,因此可做为标准光源。
电子同步加速器多用于光核反应和介子物理等方面的研究。同步辐射装置作为性能良好的新型光源,在原子、分子物理、固体物理、表面物理、天体物理、化学、生物学、医学、环境科学、能源科学、材料科学、光刻技术、显微技术和光学标准计量等等许多科学技术领域里,得到越来越广泛的应用。
参考书目
徐建铭编著:《加速器原理》,修订版,科学出版社,北京,1981。
M. S. Livingston and J. P. Blewett, particle Accelerators,McGraw-Hill, New York, 1962.
熊谷寬夫等著:《加速器》,共立出版,東京,1975。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条