1) mean transverse emission energy
平均横向发射能量
2) traverse emittance
横向发射度
1.
In order to decrease the energy spread and to get a small traverse emittance as well as high brightness of the electron beam in the injector of the FEL, a cell s microwave gun scheme adopted the technique of the harmonic cavity is presented.
为了使自由电子激光器的电子束注入器具有小的能散,小的横向发射度、高的亮度,本文提出在 腔的微波电子枪中采用混频腔技术,并用解析方法研究了混频加速的 腔方案的动力学特性,所导出的表达式说明此方案能改善束流的纵向和横向粒子动力学性能;为了对比,还借助于PARMELA程序对此方案进行了束流动力学模拟,结论与导出的解析表达式结果一致。
3) average energy
平均能量
1.
The average energy of an atomic outer-shell electrons and the atomic structural radius were proposed in this paper.
定义了原子核外电子平均能量Ei,结构半径Ri,并通过邻接矩阵定义了新的分子拓扑指数B和系列拓扑指数pB ,把原子间的相互作用情况推广到非相邻原子间的相互作用 ,同时在此基础上进一步提出了系列拓扑指数pB 。
2.
In addition,the average energy was defined and used for the analyzing of disturbance signals of regulation valve.
首先利用皮托管对相同流量不同开度及相同开度不同流量下的总压及静压信号进行测量,然后经过计算得到动压信号并进行归一化处理;其次,对归一化处理后的动压信号进行功率谱分析,取得了较好的频域分布结果;同时定义了信号的平均能量,并将其应用到了调节阀扰动信号的分析中。
4) mean transverse distance
平均横向距离
5) average radiant energy
平均辐射能
1.
A computer arithmetic based on the flame image processing of industrial boiler was established to determine the average radiant energy in furnace.
初步建立一种基于工业锅炉燃烧火焰图像处理工业锅炉炉膛平均辐射能的计算机判定算法,从理论和实现等方面讨论上述算法的可实现性和可操作性。
6) average normal
平均法向量
补充资料:能量原理与能量法
能量原理与能量法
energy principles and energy methods
nengliang yuanli yu nengliangfa能量原理与能量法(energy prineiple、and energy methods)根据能量来分析结构在外来作用下的反应的力学原理和方法。能量原理是力学中的机械能守恒定律或虚功原理在变形固体力学中的具体体现,它是能量法的理论基础,也是用能量法解题时必须满足的条件。这些条件是与平衡条件或位移协调条件等价的。能量原理和能量法与先进的计算技术相结合,显示出优越性。 应变能、余能和势能在单向应力状态下,弹性体的应变能密度(单位体积的应变能)怂可用一下式计算: ,‘一站O。凌它相当于图l中用阴影线表示的面积。另外,在单向应力状态下的余能(应力能)密度万可用下式计算: 万一俨:而它相当于图2中阴影部分的面积。由图1.21;r知 2,+万=JO‘’)。‘。~J茸祥一言一一£ d£ 图J应变能密度图2余能密度图3线弹性情尤下的应变能密度与余能密度由图3可知,线弹性体的余能密度与应变能密度在数值上相等。在简单应力状态下的应变能密度或余能密度经过总加后,可得到复杂应力状态下的应变能密度或余能密度。把它们在整个弹性体的体积内积分就得出整个弹性体的应变能或余能。对于线弹性体,应变能或余能可表示为位移或应力(内力)的二次式。弹性体的应变能与外力势能的总和称为总势能。外力势能在数值上等于各个外力在施力点位移上所做功的总和冠以负号。 能量原理在给定的外力作用下,在满足位移边界条件的所有各组位移中.实际存在的一组位移应使总势能为极值。对于稳定平衡状态,这个极值是极小值。因此,上述能量原理称为极小势能原理。它等价于平衡条件(含应力边界条件)。在满足平衡条件(含应力边界条件)的所有各组应力(内力)中,实际存在的一组应力‘内力)应使弹性体的余能为极值。对于稳定平衡状态,这个极值是极小值。因此,这个能量原理称为极小余能原理。它等价于位移协调条件。 上述两个能量原理实际上就是数学中求泛函极值的变分原理,应变能和余能分别是以位移或应力(内力夕为自变函数的泛函。所以能量原理也称变分原理,是工程力学的电要组成部分。在变分原理中,位移的变分就是虚位移,应力(内力)的变分就是虚应力(虚力)。因此,能量原理中的极小势能原理又相当于虚位移原理,极小余能原理又相当于虚应力(虚力)原理。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条