1) visualization of quantum mechanics
量子力学可视化
2) dynamics visualization
动力学可视化
1.
Based on the dynamics visualization,3D node layout and coordinate data of the vibration screen are obtained using the AutoCAD,The finite element model of the screen are established using the ANSYS;The stress and modal in the normal and resonance zone are analyzed.
以动力学可视化为基础,采用AutoCAD建立大型振动机械筛体的三维节点布局图,并提取源坐标数据,结合ANSYS建立筛体的有限元模型,分析了筛体在正常工作和过共振区时刻的应力分布以及模态,提出了修改意见,采用这种方法使计算和存储大为简便。
3) solvable potentials
量子力学可解势
4) metric visualization
度量可视化
5) quality of visualization
可视化质量
6) vector visualization
向量可视化
补充资料:量子力学中的力学量和算符
在量子力学中,当微观粒子处于某一状态时,它的力学量(如坐标、动量、角动量、能量等)一般不具有确定的数值,而是具有一系列可能值,每个可能值以一定的几率出现。当粒子所处的状态确定时,力学量具有某一可能值的几率也就完全确定。例如,氢原子中的电子处于某一束缚态时,它的坐标和动量都没有确定值,而坐标具有某一确定值r0或动量具有某一确定值p0的几率却是完全确定的。量子力学中力学量的这些特点是经典力学中的力学量所没有的。为了反映这些特点,在量子力学中引进算符来表示力学量。
算符是对波函数进行某种数学运算的符号。在代表力学量的文字上加"∧"号以表示这个力学量的算符。如坐标算符、动量算符。当粒子的状态用波函数 Ψ(r,t)描写时,坐标算符对波函数的作用就是r乘 Ψ(r,t),动量算符对波函数的作用则是微分:
可简单地写为
其他有经典类比的力学量都是r和p的函数,在量子力学中也是算符和的相应的函数。例如粒子绕原点的角动量在经典力学中是L)=r×p,因而在量子力学中角动量算符是
。
又如,在势为U(r)的力场中运动的粒子能量算符(也称哈密顿算符)为
算符是对波函数进行某种数学运算的符号。在代表力学量的文字上加"∧"号以表示这个力学量的算符。如坐标算符、动量算符。当粒子的状态用波函数 Ψ(r,t)描写时,坐标算符对波函数的作用就是r乘 Ψ(r,t),动量算符对波函数的作用则是微分:
可简单地写为
其他有经典类比的力学量都是r和p的函数,在量子力学中也是算符和的相应的函数。例如粒子绕原点的角动量在经典力学中是L)=r×p,因而在量子力学中角动量算符是
。
又如,在势为U(r)的力场中运动的粒子能量算符(也称哈密顿算符)为
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条