说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 差分-积分方程
1)  difference integration equation
差分-积分方程
2)  differential field integral equation method
差场积分方程法
1.
Improved differential field integral equation method;
磁场计算差场积分方程法的改进
3)  integro-differential-difference equation
积分微分差分方程
1.
Two-point boundary value problems of second order Hammerstein type integro-differential-difference equation is studied by means of differential inequality theories.
利用微分不等式技巧研究了某一类二阶Hammerstein型积分微分差分方程的两点边值问题,在上下解存在的条件下,得到了解的存在性和唯一性定理。
2.
Two-point boundary value problems of second order mixed type integro-differential-difference equation is studied by means of differential inequality theories.
利用微分不等式技巧研究了某一类二阶混合型积分微分差分方程的两点边值问题,在上下解存在的条件下,得到了解的存在性和唯一性定理。
3.
In this paper,Robin boundary value problems of second order integro-differential-difference equation are studied by means of differential inequality theories.
利用微分不等式技巧研究了某一类二阶积分微分差分方程的Rob in边值问题,在上下解存在的条件下,得到了解的存在性和唯一性定理。
4)  Hammerstein type integro-differential-difference equation
Hammerstein型积分微分差分方程
5)  Volterra type integro-differential-difference equation
Volterra型积分微分差分方程
1.
Singularly perturbed nonlinear boundary problem of second order Volterra type integro-differential-difference equation;
二阶Volterra型积分微分差分方程的非线性边值问题的奇摄动
2.
The existence and uniqueness and asymptotic estimates of solution for nonlinear boundary value problem of Volterra type integro-differential-difference equation is studied by means of differential inequality theories.
利用微分不等式理论研究了二阶Volterra型积分微分差分方程非线性边值问题的解的存在性。
6)  integrated squared error
积分方差
1.
With local cross validation, an asymptotic representation of local integrated squared error for the kernel density estimation under right censorship was obtained.
利用局部交叉生效方法 ,获得随机删失下核密度估计的局部积分方差的渐近表示 ,所得结果改进和推广了Watson ,Leadbetter和Csor go ,Horvath等研究的相关结
补充资料:微分方程的差分方程逼近


微分方程的差分方程逼近
approximation of a differential equation by difference equations

  微分方程的差分方程通近【app拟。mati.ofa山价犯n-ti习闪姗柱.by山血魂.理equa西姗;即即肠。砚田朋.朋巾卜碑四.别吸.。印冲.旧e朋,pa3I.ecTll目M] 微分方程用关于未知函数在某种网格上的值的代数方程组的逼近,当网格的参数(网络、步长)趋于零时可使得逼近更加精确. 设L(Lu可)是某个微分算子,几(L声。=几,。。任叭,人“凡)是某个有限差分算子(见徽分算子的差分算子通近(aPProximation of a dilferential operator by dif-feren沈。perators”.如果算子L、关于解u逼近算子L,其阶为p,即如果 }}Lh[u]*I}汽=o(hp),那么有限差分式L声、二0(o任凡)称为关于解“对微分方程Lu=O的P阶逼近. 构造有限差分方程L声*=0关于解u逼近微分方程Lu=0的最简单例子是将Lu的表达式中每个导数用相应的有限差分来代替. 例如,方程 _子“.,、血._,_八_一n Lu三书舟+P(x)于+q(x)u=U ~“一dxZr‘~产dxl‘’可用有限差分方程 L‘“‘三生理二丛吐丛二+ h‘ U~丰I一U,_I_ +尸(x们厂竺二兹巴几十,(x功)u朋一o作二阶精度逼近,其中网格几。和几;由点x.“。h组成(m是一整数),“.是函数u*在点x.的值.又,方程 au aZu L“三共牛一斗冬二0, --一ar ax,可用关于光滑解的两种不同的差分近似来逼近: _.月+1_”月气.月上.” 一门、“nt4用“用十l‘“阴l“用一I八 于九‘(撇式格式(exPlie,}seheme))和! “几’l一嗽试,‘l}一翔二,曰衅,‘从 拭’价二一一-一—一了一--一一几,(隐式格式(一mf)liczt scheme)),其中网格D*。和D*:由点(x。,甲=(川入,似)组成,:二rhZ,r二常数,巾和n是整数,。二是函数翻、在网格点(x,,t。)的值.存在这样的有限差分算子L,它对微分算子L的逼近,仅关于方程L。一0的解。特别好,而关于其他函数则差一些.例如,算一子L*L*U。三兴,·卜·夸卫一尹{刁内队引〔其中汀二·。州一随甲‘气))关f任意的光滑函数。(*)是算 广L- d仪 L“一…一甲〔戈,“)Z(工) 办的一阶逼近(_关于八)、而关于方程大u=O的解却是二阶逼近(假定函数:,充分光滑)在利用有限差分方程与。。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条