1) Generalized pseudoconvexity
广义伪凸性
2) generalized essentially pseudo convex
广义本性伪凸
1.
The sufficient optimal conditions and duality results are obtained for a multiobjective programming problem involving generalized essentially pseudo convex functions.
对Lipschitz函数定义了广义本性伪凸的概念,并对包含这类广义凸函数的多目标Lipschitz规划建立了Mond Weir型对偶和Wolf型对偶,证明了原规划与对偶规划之间的对偶定理。
2.
In this paper,a class of Lipschitz functions called generalized essentially pseudo convex is introduced.
对Lipschitz函数定义了广义本性伪凸的概念,并对包含这类广义凸函数的多目标Lips chitz规划的弱有效解给出了充分条件。
3) Generalized essentially psedo convex
广义本性伪凸
1.
In this paper, a class of lipschity functions called generalized essentially psedo convex is introduced.
对 Lipschitz函数定义了广义本性伪凸的概念 ,建立了多目标 Lipschitz规划的 Mond- Weir型对偶和 Wolfe型对偶 ,证明了原规划与对偶规划之间的对偶定理。
4) moteve characteristics
广义伪凸
5) A-N generalized pseudo-convex
A-N广义伪凸
6) Generalized Convexity
广义凸性
1.
Optimality Condition and Duality Results for a Class of Multi-objective Fractional Programming Problems with Generalized Convexity;
广义凸性条件下一类多目标分式规划问题的最优性条件和对偶
2.
Generalized increasing-decreasing functions and generalized convexity of the compound functions;
广义递增-递减函数与复合函数的广义凸性
3.
Weak duality theorem is established under generalized convexity conditions.
在广义凸性条件下,建立了弱对偶性定理。
补充资料:凸凸
1.高出貌。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条