1) Binary quadratic functions
二元二次函数
2) quadratic functions with n unknowns
n元二次函数
1.
With the help of the solid quadratic type theory and the broad converse of matrix,the author offers the full and essential conditions of the maximum and the minimum in the quadratic functions with n unknowns and supplies the solutions to the maximum and the minimum.
利用实二次型理论和矩阵的广义逆给出了n元二次函数存在最大或最小值的充分必要条件 ,以及最值点和最值的计算方法 。
4) Quality quadratic function of fertilizer effect
二元二次肥效函数
5) quadratic function
二次函数
1.
An analytic solution of quadratic function pressures on liquid press working urn;
液压机工作缸内部受任意二次函数分布压力之解析解
2.
Ponder about a dual quadratic function extreme value
关于二元二次函数极值的一点思考
6) binary function
二元函数
1.
Distingnishing again on the extreme point of binary function;
二元函数极值点的再判别
2.
A Talk of The Relation of Certain Concepts In Binary Function Differential Calculus;
浅谈二元函数微分学某些概念间的关系
3.
This paper defines a binary function related to Schwarz inequation,investigates its properties and gives some refinements for Schwarz inequation.
定义一个与Schwarz不等式相关的二元函数,研究了它的性质,并由这些性质对Schwarz不等式进行了若干加细。
补充资料:二元二次方程
二元二次方程组求解的基本思想是“转化”,即通过“降次”、“消元”,将方程组转化为一元二次方程或二元一次方程组。由于这类方程组形式庞杂,解题方法灵活多样,具有较强的技巧性,因而在解这类方程组时,要认真分析题中各个方程的结构特征,选择较恰当的方法。
(1)有两组相等的实数解。(2)有两组不相等的实数解;(3)没有实数解。
解:将②代入①,整理得。
二次方程③的判别式
(1)当,即a<2时,方程③有两个不相等的实数根,则原方程有不同的两组实数解。
(2)当,即a=2时,方程③有两个相等的实数根,则原方程有相同的两组实数解。
(3)当,即a>2时,方程③没有实数根,因而原方程没有实数解。
评析 由一个二元一次方程和一个二元二次方程组成的方程组,一般用代入法求解,即将方程组中的二元一次方程用含有一个未知数的代数式表示另一个未知数,然后代入二元二次方程中,从而化“二元”为“一元”,如此便得到一个一元二次方程。此时,方程组解的情况由此一元二次方程根的情况确定。比如,当时,由于一元二次方程有两个相等的实根,则此方程组有相同的两组实数解……诸如此类。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条