说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 非交换上理想整环
1)  Non-(oiiimutative prinripal ideal domain
非交换上理想整环
2)  non-commutative principal ideal domain
非交换主理想整环
1.
This paper proves the existence theorem of the system of basic solutions for the right homogeneous linear equation sets over a non-commutative principal ideal domain R and gives the representation of the solutions for the right linear equation sets over R.
证得非交换主理想整环R上右齐次线性方程组基础解系存在定理,给出R上右线性方程组解的表示。
3)  non-commutative principal ideal ring
非交换主理想环
4)  non-commutative domain
非交换整环
5)  commutative integral domains
交换整环
1.
Linear maps preserving idempotence between matrix modules over commutative integral domains and its applications;
交换整环上矩阵模之间保幂等的线性映射及其应用
6)  commutative ideal
交换理想
1.
Some properties on commutative ideals of BCI algebras are obtained, and an error of paper is corrected.
讨论了BCI-代数交换理想的性质,纠正了C。
补充资料:非结合环与非结合代数


非结合环与非结合代数
on-associative rings and algebras

非结合环与非结合代数【珊心胭仪妇柱视血娜.d alge-b旧s;。eaceo””姗.oe.二、双a.幼。6P。」 具有两个二元运算+与,,除了可能不满足乘法结合律外,满足结合环与代数(a洛。clati记nn邵and目罗b璐)之所有公理的集合.非结合环与代数的第一批例子出现在19世纪中叶,是不结合的(Ca外呀数(c盯触yn山n1比IS)和更一般的超复数(h”姆rComp恤nUmber)).给定一个结合环(代数),如果用运算〔a,bl二ab一ba代替原有的乘法,其结果是一个非结合环(代数),这是个Lie环(代数).另一类重要的非结合环(代数)是Jo攻lan环(代数),它们可由在特征非2的域(或有1和1/2的交换的算子环)上的结合代数中定义运算a·b=(ab+ba)/2得到.非结合环与代数的理论已经发展成代数学的一个独立分支,展现出与数学的其它领域以及物理学、力学、生物学及其他学科的许多联系.这个理论的中心部分是熟知的拟结合环和代数(n比ly一别粥戊泊石wn刀乡缸记a】罗bras)的理论,它们有:Lie环和珠代数,交错环和交错代数,北攻坛幻环与Joltlan代数,MaJ几哪B环和Ma月五U口B代数,以及它们的某些推广(见Ue代数(Lieal罗bra);交错环与代数(司加叮必tiverm邵alld目罗b挑);J加止川代数(Jo攻协nal罗bIa);M幼城e。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条