1) scaling vector
尺度向量
1.
In a Hilbert space,some concepts, such as multiresolution analysis(MRA),orthogonal wavelet vector,scaling vector,unitary shift operator, are introduced,the existence of the scaling vector and orthogonal waveletvector are proved,and the standard forms of them are also given.
在Hilbert空间中,引入了小波算子对、多尺度分析(MRA)、正交小波向量、尺度向量、酉移位算子的概念,证明了尺度向量与正交小波向量的存在性且给出了它们的一般形
2.
A vector-valued functionφ(x) = (φ_1(x),φ_2(x),…,φ_r(x))~T(x∈R), is said to be a scaling vector if it is compactly supported and satisfies following matrix refinementequationφ(x) = sum from n=0 to N C_nφ(2x-n) with N≥1.
设φ(x)=(φ_1(x),φ_2(x),…,φ_r(x))~T是尺度向量,即满足矩阵加细方程φ(x)=sum from n=0 to N C_nφ(2x-n)(N≥1),且它是紧支撑。
2) vector-valued scaling functions
向量值尺度函数
3) scale transformation vector
尺度变换向量
1.
The fourth form on the expert opinion expression,scale transformation vector,is put forward in this paper and it is proved that both the weighted arithmetical mean and the weighted greometric mean will converge in probability to the impersonal sequence scale transformation vecfor if there are enough experts and the convergence of group thought is validated finally.
提出了专家意见表达的第4种形式:尺度变换向量。
4) biorthogonal scaling vectors
双正交尺度向量
1.
we give a procedure for constructing compactly supported,biorthogonal multiwavelets with scale a from biorthogonal scaling vectors with scale a and support on [-1,1];what s more,we also get an effective algorithm of wawelet construction.
在区间[-1,1],给出了利用a尺度双正交尺度向量构造a尺度双正交多小波的推导过程得到了一种有效的小波构造算法,并给出了数值算例。
5) multiple vector-valued scaling functions
多重向量值尺度函数
6) Scaling kernel support vector regression
尺度核支持向量回归
补充资料:变尺度法
分子式:
CAS号:
性质:变尺度法是在解无约束极值问题的梯度法基础上发展起来的,它利用递推的方法计算目标函数的二阶导数及其逆阵,减少了计算量,同时比梯度法收敛快,是目前解决无约束极值问题的最有效的算法之一。
CAS号:
性质:变尺度法是在解无约束极值问题的梯度法基础上发展起来的,它利用递推的方法计算目标函数的二阶导数及其逆阵,减少了计算量,同时比梯度法收敛快,是目前解决无约束极值问题的最有效的算法之一。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条