1) constant regression
常回归
1.
It is proved in this parper that population X of nonsingula distribution with EX 2<∞ is of Poisson type distribution P(λ,α,1) if and only if the statistic T 2-T 1 has constant regression on T 1 ,where T 1==1n∑ni=1 X i is sample mean and T 2=1n-1∑ni=1(X i-) 2 is sample variance.
证明了满足EX2 <∞的具有非退化分布的母体X服从Poisson型分布P(λ ,α ,1)的充要条件是T2 -T1关于T1有常回归 ,其中T1= X =1n ∑ni =1Xi,T2 =1n - 1∑ni=1(Xi- X) 2 分别为子样均值和子样方
2) the return of general knowledge
回归常识
3) regression constant
回归常数
4) autoregression constants
自回归常数
5) multidimensional normal regression theory
多维常态回归理论
6) regression
[英][rɪ'ɡreʃn] [美][rɪ'grɛʃən]
回归
1.
The building of mathematical regression model of prototype of female large bust and waist figure;
女胸特大腰细体合体上下装原型结构数学回归模型的建立
2.
Linear Regression Analysis and Calculation of Uncertainty with EXCEL Software;
用EXCEL进行线性回归分析及测量不确定度的计算
3.
To acquire the regression equation for chemical experiment data with Excel;
用Excel求取化工数据组回归方程
补充资料:常系数线性常微分方程
常系数线性常微分方程
ion with constant coefficients linear ordinary differential equa-
常系数线性常微分方程【枷。ro司画叮由肠,即位叭侧,.-d佣初山伪份加吐仪喇击d曰血;皿“e如oe皿巾加Pe皿”ua-朋oeyP姗ell“e c noc”皿Hn“MH劝3如加”HellT别”“} 形如 x(”)+a:x(”一’)+…+a。x=f(r)(1)的常微分方程(见常微分方程(山伍州翔石日eq业tion,。成咖叮)),其中x(t)是未知函数,a,,…,a。是给定的实数,f(t)是给定的实函数. 对应于(l)的齐次方程(加几幻g”阳us叫Ua-tion) x(”)+a .x‘”一’)+…+a。x=o(2)可求积如下.设又:,…,又*是特征方程 又”+al几”一’+…+a。_1又+a。=O(3)的所有不同的根,重数分别为l,,…,l*;11十…十l*=n.于是函数e匆‘,r。‘,‘,…,r‘,一’e‘,亡,j=1,…,k(4)是(2)的线性无关的解(一般说是复的);即它们构成一个基本解组(允n山nrnt习systeTn of solutions).(2)的通解是基本解组的具有任意常数系数的线性组合·如果幻=为+角i是复数,则对每个满足o簇m蕊12一l的整数m,复解t门e”‘的实部t,e勺‘·cOS口zt和虚部t“e口,r sin刀,t是(2)的线性无关的实解,从而重数为lj的一对共扼复根为士汤i对应Zlj个线性无关的实解t爪e勺‘c“口,t,t用e“,‘sin几t,川=o,l,‘”,l,一l· 非齐次方程(l)可以用常数变易法(银由tionofco璐扭nts)求积.如果f是拟多项式(q恻昭i一卯1扣om阁)即 f(t)=e“‘(尹.(r)c沉bt+砚。(t)sin br),其中p。,q。是次数续m的多项式,且a十bi不是(3)的根,则可求(l)的形如 x。(t)=e“‘(P。(t)姗br+Q。(r)sin bt)(5)的特解;这里氏,Q。是系数待定的m次多项式,这些系数可通过以(5)代人(l)求出.如果a+bi是(3)的k重根,则可用待定系数法求(l)的形如 x。(t)=r‘e“‘(p,(r)e仿br+Q。(r)sin bt)的特解.如果x。(O是非齐次方程(l)的一个特解而x:(t),…,x。(t)是相应的齐次方程(2)的基本解组,则(l)的通解由公式 x(t)=x。(t)+ C lx,(t)+…+C。x。(r)给出,其中C,,…,C。是任意常数. n阶齐次线性微分方程组 交=Ax(6)(其中x任R”是未知向量,A是n xn实矩阵)可如下求积.如果又是矩阵A的重数为k的实本征值,则可求出对应于又的一个解x=(x:,,二,x。),其中 x:=pl(t)e,亡,…,x。=p。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条