1) Bayes A-optimum design
贝叶斯A-最优化设计
2) Bayes D-optimum design
贝叶斯D-最优设计
3) optimal Bayesian estimation
最优贝叶斯估计
1.
Based on study to the principle of discrete system\'s optimal Bayesian estimation,and according to different approximation techniques of posterior density,the authors categorize these approximation approaches into three types: function approximation,sampling-based approximation,and Gaussian sum approximation.
从离散系统的最优贝叶斯估计原理出发,根据对后验密度近似计算方法不同,将近似方法分为3类:函数近似方法、采样近似法和高斯和近似法。
4) BOA
[英]['bəʊə] [美]['boə]
贝叶斯优化
1.
A Bayesian optimization algorithm(BOA) for UAV path planning problem is presented,which involves choosing path representation and designing appropriate metric to measure the quality of the constructed network.
提出了一种基于贝叶斯优化算法的无人机路径规划方法。
5) Bayesian design
贝叶斯设计
6) BOA
[英]['bəʊə] [美]['boə]
贝叶斯优化算法
1.
The Bayesian Optimization Algorithm (BOA) was introduced to tackle the coordination attack problem.
将贝叶斯优化算法(BOA)引入到协同攻击优化领域中。
补充资料:贝叶斯公式
贝叶斯公式为利用搜集到的信息对原有判断进行修正提供了有效手段。在采样之前,经济主体对各种假设有一个判断(先验概率),设为,{}。
关于先验概率的分布,通常可根据经济主体的经验判断确定(当无任何信息时,一般假设各先验概率相同),较复杂精确的可利用包括最大熵技术或边际分布密度以及相互信息原理等方法来确定先验概率分布。
当采样得到样本值后,当事人对各假设的判断(后验概率)为
关于先验概率的分布,通常可根据经济主体的经验判断确定(当无任何信息时,一般假设各先验概率相同),较复杂精确的可利用包括最大熵技术或边际分布密度以及相互信息原理等方法来确定先验概率分布。
当采样得到样本值后,当事人对各假设的判断(后验概率)为
,= 1, 2, %26#8230;, (5.5)
在实际经济生活中,信息搜寻工作不是一次就完成的。当信息搜寻进行到某一阶段,设已进行了 次采样( =1,2,%26#8230;),此时经济主体对各假设的后验概率的认识为
=1, 2, %26#8230;, (5.6)
其中,表示在第次采样前对假设的判断,当 =1时即表示第一次采样前的先验概率,从而式(5.5)变成式(5.6)的一个特例,即,将其记为。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条