1) quantum transformation theory
量子变换理论
1.
Energy spectrum of non-identical coupled harmonic oscillators is given by using quantum transformation theory.
利用量子变换理论 ,极其简洁地给出了各向异性耦合谐振子的能谱 ,从而提出了一种普遍的方
2) linear quantum transformation
广义线性量子变换理论
1.
The vibration of linear polyatomic molecule are generally solved utilizing general linear quantum transformation theory and stationary state perturbation theory.
采用键长伸缩和垂直键轴位移为内坐标,多维耦合谐振子、势函数中超过二次幂的项分别为零级近似和微扰的线型多原子分子振动模型,运用广义线性量子变换理论和定态微扰论对线型多原子分子振动进行了普遍求解,将线型多原子分子简谐振动能量本征值和态的求解转化成正定和半正定矩阵的对角化问题,微扰矩阵元、能量和波函数各级修正的计算转换到多维无耦合谐振子的本征表象中进行。
3) linear quantum transformation theory(LQTT)
线性量子变换理论(LQTT)
4) WAVELET transform theory
子波变换理论
1.
To present a new classifying system using neural networks,in which modern signal technologies,PCA neural networks and WAVELET transform theory,have been involved.
通过研究目标识别与分类问题,提出了一种新型神经网络分类系统结构,并在该系统中充分应用主分量分析神经网络及子波变换理论,最后通过对海上实录数据的分类处理证实了此新型系统的有效
5) quantum invariant theory
量子不变量理论
1.
On the basis of the quantum invariant theory, we study the light propagating in the general optical fiber and obtain the exact solution of the Schrodinger-like equation for the sustem .
用量子不变量理论研究光在一般光纤中传播的系统 ,求出此系统的精确
2.
On the basis of the quantum invariant theory, we study the double quantum wells and find the exact solution for the system.
用量子不变量理论研究双量子阱系统 ,求出此系统的精确解 ,并利用此精确解求出了对绝热近似的任意阶修
6) quantum transformation
量子变换
1.
Theory of linear quantum transformation and its application;
量子变换理论及其应用概述
2.
By the aid of the linear quantum transformation theory, we derive the analytic expression of the partition function for the quadratic systems.
利用量子变换理论,给出了多维相空间中二次型系统配分函数的解析表达式,利用这一公式,可以在不知系统能谱的情况下,非常方便地得到系统的配分函数。
3.
By the aid of the linear quantum transformation (LQT) theory, we give a concise diagonalization for n-mode boson and fermion of quadratic Hamiltonian.
借助线性量子变换(LQT)理论,对n模玻色和费米子的二次型哈密顿量,我们给出了简洁的对角化形式。
补充资料:变换理论
研究天体运动方程的一种处理方法。在天体力学中,经常需要将变量进行变换,从而改变天体运动方程的形式以便于研究。根据不同的问题,需要研究采用什么样的变换,这就形成了天体力学中的变换理论。它包括两方面的内容:
正则变换 分析力学中的哈密顿方程又称正则方程,它具有对称性等一些优点,是解决力学问题的一种常用的方程形式。如果变量变换后新方程仍保持正则形式,这种变换称为正则变换。若在变换中不显含时间,这样的正则变换称为保守正则变换;若保守正则变换使哈密顿函数不变,则此保守正则变换称为完全正则变换。1916年,蔡佩尔用正则变换寻找循环坐标的方法处理天体力学中的具体问题,这种方法称为蔡佩尔方法。1959年,布劳威尔用蔡佩尔方法处理人造天体的运动问题,称为布劳威尔-蔡佩尔方法。这种方法采用的正则变换是由隐函数定义的,要经过复杂的计算才能给出新旧变量的显函数关系。堀源一郎把李级数的概念和结果应用到正则变换,通常称为堀源-李变换。堀源一郎还把这种理论从正则系统推广到非正则系统,并应用到受摄开普勒运动和非线性振动问题上。谢费勒把正则变换的概念推广到不同维数空间之间的变换,并给出了进行这种变换的一些条件。
正规化变换 消除质点组运动方程中碰撞奇点(见碰撞问题)的变换称为正规化变换。它通常包含自变量变换和坐标变换两部分。正规化变换消除运动方程的奇点后,使新的坐标成为新的自变量的解析函数,这样就便于从理论上进行讨论,并有可能给出运动方程解的具体表达方式。三体问题中著名的松德曼级数就是在对二体碰撞奇点进行正规化变换以后得到的。对于一些可积的问题,正规化变换往往指出了积分的途径。在平面圆型限制性三体问题中,蒂勒变换可以用来积分双不动中心问题。用数值方法积分包含碰撞奇点的运动方程时,离碰撞奇点越近,方程右端函数的变化就越快。在这种情况下,积分步长必须急剧减小,这样既耗费计算时间,又不能保证精度。正规化变换以后可大大提高计算效率和计算精度。
平面二体问题中最著名的正规化变换是列维-齐维他变换。变换后的运动方程在能量常数小于零时是简谐振动方程。将列维-齐维他变换直接推广,用于空间二体问题,便形成KS变换。在空间二体问题中,还有莫泽变换。这是用球极平面射影及其正则扩充,把2n维相空间变换成n+1维空间的单位球面及其切空间。当n=3时,可以把具有负能量的开普勒轨道变换成球面上的测地线,把碰撞奇点变换成球面上的一个极点,经过这个极点的大圆对应于碰撞轨道。
将以上这些正规化变换用到多体问题中都只能使一个二体碰撞奇点正规化,因而这些变换称为局部正规化变换。局部正规化已能解决许多实际工作的数值积分问题和部分理论课题。使所有的二体碰撞奇点同时进行正规化的变换称为全局正规化变换,这比局部正规化要困难得多。研究平面圆型限制性三体问题的全局正规化的历史最长,结果也比较完善。一般采用以两个大质量质点连线中点为原点的旋转坐标系。将旧坐标 z和新坐标w都作为复变量,它们之间的关系用保角映射z=f(w)表示。自变量t变换成s的关系是dt/ds=|dz/dw|2。这些变换中最著名的是蒂勒变换z=(cosw)/2。蒂勒变换曾被用来对平面圆型限制性三体问题的周期轨道进行了大量的数值积分工作。另外,还有z=(wn+w-n)/4的变换。当n=1时,为伯克霍夫变换;而n=2时,则为勒梅特变换。所有这些变换都同时使两个碰撞奇点正规化,剩下唯一的碰撞奇点是z平面上的无穷远点。
参考书目
V.G.Szebehely, Theory of orbits-The Restricted Problem of Three Bodies,Academic Press,New York,1967.
E.L.Stiefel and G.Scheifele,Linear and Regular Celestial Mechanics,Springer-Verlag,Berlin,1971.
正则变换 分析力学中的哈密顿方程又称正则方程,它具有对称性等一些优点,是解决力学问题的一种常用的方程形式。如果变量变换后新方程仍保持正则形式,这种变换称为正则变换。若在变换中不显含时间,这样的正则变换称为保守正则变换;若保守正则变换使哈密顿函数不变,则此保守正则变换称为完全正则变换。1916年,蔡佩尔用正则变换寻找循环坐标的方法处理天体力学中的具体问题,这种方法称为蔡佩尔方法。1959年,布劳威尔用蔡佩尔方法处理人造天体的运动问题,称为布劳威尔-蔡佩尔方法。这种方法采用的正则变换是由隐函数定义的,要经过复杂的计算才能给出新旧变量的显函数关系。堀源一郎把李级数的概念和结果应用到正则变换,通常称为堀源-李变换。堀源一郎还把这种理论从正则系统推广到非正则系统,并应用到受摄开普勒运动和非线性振动问题上。谢费勒把正则变换的概念推广到不同维数空间之间的变换,并给出了进行这种变换的一些条件。
正规化变换 消除质点组运动方程中碰撞奇点(见碰撞问题)的变换称为正规化变换。它通常包含自变量变换和坐标变换两部分。正规化变换消除运动方程的奇点后,使新的坐标成为新的自变量的解析函数,这样就便于从理论上进行讨论,并有可能给出运动方程解的具体表达方式。三体问题中著名的松德曼级数就是在对二体碰撞奇点进行正规化变换以后得到的。对于一些可积的问题,正规化变换往往指出了积分的途径。在平面圆型限制性三体问题中,蒂勒变换可以用来积分双不动中心问题。用数值方法积分包含碰撞奇点的运动方程时,离碰撞奇点越近,方程右端函数的变化就越快。在这种情况下,积分步长必须急剧减小,这样既耗费计算时间,又不能保证精度。正规化变换以后可大大提高计算效率和计算精度。
平面二体问题中最著名的正规化变换是列维-齐维他变换。变换后的运动方程在能量常数小于零时是简谐振动方程。将列维-齐维他变换直接推广,用于空间二体问题,便形成KS变换。在空间二体问题中,还有莫泽变换。这是用球极平面射影及其正则扩充,把2n维相空间变换成n+1维空间的单位球面及其切空间。当n=3时,可以把具有负能量的开普勒轨道变换成球面上的测地线,把碰撞奇点变换成球面上的一个极点,经过这个极点的大圆对应于碰撞轨道。
将以上这些正规化变换用到多体问题中都只能使一个二体碰撞奇点正规化,因而这些变换称为局部正规化变换。局部正规化已能解决许多实际工作的数值积分问题和部分理论课题。使所有的二体碰撞奇点同时进行正规化的变换称为全局正规化变换,这比局部正规化要困难得多。研究平面圆型限制性三体问题的全局正规化的历史最长,结果也比较完善。一般采用以两个大质量质点连线中点为原点的旋转坐标系。将旧坐标 z和新坐标w都作为复变量,它们之间的关系用保角映射z=f(w)表示。自变量t变换成s的关系是dt/ds=|dz/dw|2。这些变换中最著名的是蒂勒变换z=(cosw)/2。蒂勒变换曾被用来对平面圆型限制性三体问题的周期轨道进行了大量的数值积分工作。另外,还有z=(wn+w-n)/4的变换。当n=1时,为伯克霍夫变换;而n=2时,则为勒梅特变换。所有这些变换都同时使两个碰撞奇点正规化,剩下唯一的碰撞奇点是z平面上的无穷远点。
参考书目
V.G.Szebehely, Theory of orbits-The Restricted Problem of Three Bodies,Academic Press,New York,1967.
E.L.Stiefel and G.Scheifele,Linear and Regular Celestial Mechanics,Springer-Verlag,Berlin,1971.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条