说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> Riccati算子
1)  Riccati operator
Riccati算子
1.
Using the relation between Riccati operator and H∞ supoptimal problem, an analytic structure and design method of the robust controller are given.
本文从Riccati算子与H~∞次优问题的关系出发,根据鲁棒稳定问题的特殊性,给出了一种有界加摄动下系统鲁棒控制器的解析结构方案和设计方法。
2)  substructures-Riccati method
子结构-Riccati法
3)  Riccati inequality
Riccati不等式
1.
Robust controller design of microvibration isolation platform based on Riccati inequality
基于Riccati不等式的微动隔振平台鲁棒性能控制器设计
2.
An H_∞ robust controller which can guarantee robustness of the system was obtained by solving the Riccati inequality with symmetric positive solution.
将负载扰动和各杆间耦合扰动的抑制问题归结为标准的H∞控制问题;基于Riccati不等式的处理方法,通过求Riccati不等式的对称正定解得到H∞控制器,以保证系统的鲁棒性。
3.
This paper discusses the stability of interval matrices Am,AM] by the Lyapunov and Riccati inequality methods.
利用Lyapunov方法及Riccati不等式方法讨论了区间矩阵[Am,AM]的稳定性。
4)  Riccati equations
Riccati方程组
1.
By using two extended Riccati equations and Mathematica software,the author obtains exact solutions to the Variable Coefficient Burgers Equation with forced term outside and Witham-Broer-Kaup equation,including many kinds of solitary-wave-like solutions,like periodical solutions and solitary wave solutions with variable speed,many of which are found for the first time.
借助两个推广形式的Riccati方程组和Mathematica软件,求出了具外力项变系数Burgers方程和Witham- Broer-Kaup方程的一些精确解,包括各种类孤立波解、类周期解和变速孤立波解,其中许多解是新的。
2.
By constructing one new Riccati equations and using the generalixed Riccati method,we simplified the form and enriched the general results.
通过构造新的Riccati方程组,推广了Riccati方法,使其具有简洁的形式,丰富和发展了已有的结果,借助Mathematica软件,进一步获得了KdV-Burgers方程的一些新的孤波解。
3.
By using two extended Riccati equations and Mathematica software,exact solutions Of(2+1)-dimensional Broer-kaup equations with variable coefficients are obtained.
基于齐次平衡原则和分离变量法的思想,通过两个推广的Riccati方程组和Mathematica软件,求出了变系数(2+1)维Broer-kaup方程的一些精确解,包括各种类孤立波解、类周期解,其中许多解是新的。
5)  Riccati transformation
Riccati变换
1.
Riccati transformation is used to consider third nonlinear difference equation of the form△[an△(bn△(xn - qn-r))] + qnf(xn-σ) = 0, (1)a new suffisanle criterion for oscillation behavior of all solutions of (1) is obtained and an example is given to explain the use of this criterion.
应用Riccati变换法对三阶非线性中立型差分方程 Δ[α_nΔ(b_nΔ(χ_n-p_(n-r)))]+q_nf(χ_(n-c)=0 (1)进行讨论,得出了方程解的振动性的一个充分性判据,并给出了具体实例。
2.
A sufficient condition on the oscillation of the second order nonlinear neutral dynamic equations is given bying generalized Riccati transformation and using analytic method and technique,and a property of a certain perturbed nonlinear dynamic equation is considered.
运用广义Riccati变换给出时标上二阶非线性中立型动力学方程振动的充分条件,进一步研究了具扰动项的动力学方程解的性态。
3.
Oscillatory properties of solutions of a class of nonlinear hyperbolic partial functional differential equations with multi-delays are studied and some new sufficient conditions for the oscillation of all solutions of the equations are obtained under two boundary value conditions by using the method of differential inequalities and Riccati transformation.
讨论一类多滞量非线性双曲型偏泛函微分方程解的振动性,利用微分不等式方法和Riccati变换,获得了该类方程在两类不同边值条件下振动的新的充分条件,通过实例对所得结果加以阐明。
6)  Riccati equations
Riccati方程
1.
On General Solutions of A Class of Riccati Equations;
一类Riccati方程的通解的问题
2.
The existence of particular solutions for a class of Riccati equations is studied by means of variation of constants and initial integral methods.
利用常数变易法以及初等积分法研究了一类Riccati方程的特解存在性,结果推广了以前所知结果。
3.
This paper gives an estimate of upper bounds of the (n,1) order of meromorphic solutions of Riccati equations and another sort of typical differential equations and proves the conjecture of under some condition.
本文给出 Riccati方程及另外一类具有代表性微分方程的亚纯解 (n,1 )级的上界估计 ,在一定条件下确立了文 [2 ]中的猜测的正确
补充资料:凹算子与凸算子


凹算子与凸算子
concave and convex operators

凹算子与凸算子「阴~皿d阴vex.耳阳.勿韶;.留叮.肠疽“‘.小啊j阅雌口叹甲司 半序空间中的非线性算子,类似于一个实变量的凹函数与凸函数. 一个Banach空间中的在某个锥K上是正的非线性算子A,称为凹的(concave)(更确切地,在K上u。凹的),如果 l)对任何的非零元x任K,下面的不等式成立: a(x)u。(Ax续斑x)u。,这里u。是K的某个固定的非零元,以x)与口(x)是正的纯量函数; 2)对每个使得 at(x)u。续x《月1(x)u。,al,月l>0,成立的x‘K,下面的关系成立二 A(tx))(l+,(x,t))tA(x),00. 类似地,一个算子A称为今单(~ex)(更确切地,在K上“。凸的),如果条件l)与2)满足,但不等式(*)用反向不等号代替,并且函数粉(x,t)<0. 一个典型的例子是yP‘KOH积分算子 通rx‘t、1二f天(t.:,x(s))山, G它的凹性与凸性分别由纯量函数介(t,s,。)关于变量u的凹性与凸性所确定.一个算子的凹性意味着它仅仅包含“弱”的非线性—随着锥中的元素的范数增加,算子的值“慢慢地”增加.一般说来,一个算子的凸性意味着,它包含“强”的非线性.由于这个理由,包含凹算子的方程在许多方面不同于包含凸算子的方程;前者的性质类似于相应的纯量方程,而不同于后者,后者关于正解的唯一性定理是不成立的.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条