1) uniform Hausdorff metric
一致对称差度量
1.
Discuss further the relation between uniform symmetric difference metric d Δ and uniform Hausdorff metric D H about convergence Prove that the array of Fuzzy unmbers { A ~ (n) } convergent to a non real type Fuzzy number A ~ about d Δ if and only if { A ~ (n) } convegent about D H to A ~ or convergent to a Fuzzy number B ~ that has same platform as A ~ (n) .
讨论了一致对称差度量 d Δ 与一致 Hausdorff 度量 D H 收敛性之间的联系,证明了 Fuzzy 数序列{ A~ (n)}按 d Δ收敛于非实型 Fuzzy 数 A~ 的充分必要条件是{ A~ (n)}按 D H 收敛于 A~,或收敛于一个与 A~同台的 Fuzzy 数 B~ 。
2) symmetric diffrence distance d Δ
对称差度量d_Δ
3) symmetric compact difference
对称紧致差分
1.
The first order modified form of three dimensional compressible viscous disturbance equations is discretized numerically through using a family of high accuracy symmetric compact difference schemes.
用一类高精度对称紧致差分格式数值离散一阶改型三维可压粘性扰动方程 ,对导出的非线性离散特征值问题采用二阶修正Newton Raphson边值迭代局部解法 ,实现了超声速剪切流的线性空间稳定性分析。
4) p mean Symmetric Difference Metric
p-平均对称差度量
1.
By applying Lebesgue s measure on the symmetric difference of sets,the p mean symmetric difference metric d Δp is established to measure the difference between Fuzzy numbers,and it is proved that d Δ p is a complete pseudo metric on space E(K)={A~|A~∈E 1,A 0K,K∈I(R)},and it is illustrated by examples that (E 1,d Δp ) is not complete pseudo metric space.
从集合的对称差集合的 L ebesgue测度出发 ,建立了衡量 Fuzzy数之间差异的p-平均对称差度量 dΔp,证明了 dΔp在空间 E1(K) ={ A~ |A~ ∈ E1,A0 K,K∈ I(R) }上是完备的拟度量 ,并举例说明 (E1,dΔ p)不是完备的拟度量空间。
5) weighted average symmetric difference distance d λΔ
加权对称差度量d_(λΔ)
6) p mean symmetric difference distance
p-平均对称差度量d_(Δp)
补充资料:可公度量和不可公度量
可公度量和不可公度量
ommensulble and incommensuable magnitudes (quantities)
可公度t和不可公度t【~e璐u由lea目in~men-su.ble magultodes(quanti柱es);“洲口Mel娜M毗“”“”-113Mep目M曰e肠eJ皿,一皿曰』 如果两个同类量(例如两个长度或两个面积)具有或不具有公度(common measure,即另一个同类量,所考虑的两个量都是这个量的整数倍),则相应地称这两个量为可公度量或不可公度量.正方形的边长和对角线,或圆的面积和丫的半径的平方,都是不可公度量的例尹.如果两个量是可公度的,则‘l艺们的比是有理数;相反,不可公度量忿比是无理数、
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条