说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 严格奇异算子
1)  strictly singular operator
严格奇异算子
1.
As pointed by the author, the sum of two complemented subspaces of Banach space X may not be complemented space of X ; however, when P and Q are all continuous linear projection operators on X and PQ are strictly singular operators, PX+QX are complemented.
指出Banach空间X的两个可补子空间之和未必再是X的可补子空间,但当P和Q都是X上连续线性投影算子且PQ是严格奇异算子时,PX+QX是可补的。
2.
It is proved that existence of nontrivial Riesz operators on general classical Banach spaces, the class of redical operators are large than S(X) , the class of strictly singular operators on some Banach spaces.
讨论一般巴拿赫空间上非紧的黎斯算子存在问题,说明各经典巴拿赫空间上确有这种非平凡的黎斯算子,给出一类空间,其上的根算子理想与严格奇异算子理想是不重合的。
2)  strictly cosingular operator
严格余奇异算子
3)  singular operator
奇异算子
1.
A creation for the inverse of singular operator and its application in regulator design;
奇异算子的一种逆化及其应用于奇异系统调节器设计
4)  strictly convex operator
严格凸算子
1.
The strictly convex operator and smooth operator are defined, it is shown that if T * is smooth operator, T is strictly convex operator and if T * is strictly convex operator, T is smooth operator.
定义了严格凸算子和光滑算子,证明了若T*是严格凸算子,则T是光滑算子;若T*是光滑算子,则T是严格凸算
5)  strictly positive operator
严格正算子
6)  singular nonincreasing operators
奇异减算子
1.
A new class of operators——singular nonincreasing operators is given.
提出了一类新的概念——奇异减算子,并对该类算子的不动点的存在性进行了讨论,得到了奇异减算子的不动点的存在唯一性的几个定理。
补充资料:凹算子与凸算子


凹算子与凸算子
concave and convex operators

凹算子与凸算子「阴~皿d阴vex.耳阳.勿韶;.留叮.肠疽“‘.小啊j阅雌口叹甲司 半序空间中的非线性算子,类似于一个实变量的凹函数与凸函数. 一个Banach空间中的在某个锥K上是正的非线性算子A,称为凹的(concave)(更确切地,在K上u。凹的),如果 l)对任何的非零元x任K,下面的不等式成立: a(x)u。(Ax续斑x)u。,这里u。是K的某个固定的非零元,以x)与口(x)是正的纯量函数; 2)对每个使得 at(x)u。续x《月1(x)u。,al,月l>0,成立的x‘K,下面的关系成立二 A(tx))(l+,(x,t))tA(x),00. 类似地,一个算子A称为今单(~ex)(更确切地,在K上“。凸的),如果条件l)与2)满足,但不等式(*)用反向不等号代替,并且函数粉(x,t)<0. 一个典型的例子是yP‘KOH积分算子 通rx‘t、1二f天(t.:,x(s))山, G它的凹性与凸性分别由纯量函数介(t,s,。)关于变量u的凹性与凸性所确定.一个算子的凹性意味着它仅仅包含“弱”的非线性—随着锥中的元素的范数增加,算子的值“慢慢地”增加.一般说来,一个算子的凸性意味着,它包含“强”的非线性.由于这个理由,包含凹算子的方程在许多方面不同于包含凸算子的方程;前者的性质类似于相应的纯量方程,而不同于后者,后者关于正解的唯一性定理是不成立的.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条