说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 极小周长
1)  minimal perimeter
极小周长
2)  minimal periodic solutions
极小周期解
1.
By using the critical point theory,the paper gives the results of the existence of the minimal periodic solutions of the symmetrical autonomous natural Hamiltonian systems with the condition that the potential function is one order differentiable.
利用临界点理论,对一类对称自然Hamilton系统在位势函数为一阶可微等条件下,给出极小周期解存在的结果。
2.
Using the Nehari argument about the constrained extreme values and the theorem that the functional defined on complete Finsler manifold and satisfying the Palais-Smale condition and having lower bound has a minimal value point,we study the existence of the minimal periodic solutions for nonconvex quadratic and superquadratic second order Hamiltonian systems.
利用关于约束板值的Nehari技巧和完备Finsler流形上满足Palais-Smale条件的下有界连续可微泛函存在极小值点的定理,研究了非凸二次和超二次二阶Hamilton系统的极小周期解的存在性。
3)  minimal periodic solution
极小周期解
1.
The existence of the minimal periodic solutions to two classes of the nonconvex subquadratic autonomous second order Hamiltonian systems is studied on the basis of the Rabinowitz s saddle point theorem and the Morse index estimation of its critical points.
利用 Rabinowitz鞍点定理及其临界点的Morse指标估计研究了二类非凸次二次二阶自治Hamilton系统的极小周期解的存在性。
2.
In this paper,by comparing the Morse indexes of the critical points corresponding to the minimal value and the trivial value of the variational function,the existence of the minimal periodic solutions for a class of nonconvex autonomous second order Hamiltonian systems are discussed.
本文通过比较泛函的极小临界点和平凡临界点的Morse指标,得到一个关于非凸自治二阶Hamilton系统非常值极小周期解的存在性定理。
4)  minimum periodic point
极小周期点
1.
But how to determine the existence of minimum periodic point on function figure? Here in this paper we translate the complex figure into monotonous continuous broke linegraph.
在文[1]中介绍了Sarkovski定理,留给人们一个疑问:如何从图象判断极小周期点的存在性?本文先把复杂函数的图象转化为单调连续的折线,然后根据区间的变化确定极小周期点的存在
5)  periodic point with minimam orbit
极小周期轨道
6)  bounded minimax periodic orbit
限制的极小极大周期轨
补充资料:送周长史
【诗文】:
青枫树里宣城郡,独佐诸侯上板桥。江客亦能传好信,
山僧多解说南朝。云阴出浦看帆小,草色连天见雁遥。
别有空园落桃杏,知将丝组系兰桡。



【注释】:



【出处】:
全唐诗:卷286_21
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条