2) Graded quotient ring
分次分式环
3) graded PS-ring
分次PS-环
1.
We prove that S is a graded right V-ring if and only if R is a graded right V-ring,S is graded PS-ring if and only if R is a graded PS-ring,and S is a Von Neumann regular ring if and only if R is a graded Von Neumann regular ring.
本文引进了分次环的分次Excellent扩张概念,设S=⊕_(g∈G)S_g是R=⊕_(g∈G)R_g的分次Excellent扩张,证明了S是分次右V-环当且仅当R是分次右V-环,S是分次PS-环当且仅当R是分次PS-环,S是分次Von Neumann正则环当且仅当R是分次Von Neumann正则环。
4) graded ring
分次环
1.
It introduces a new conception—augmented(G,H)-graded rings,give two characterizatons for augmented(G,H)-graded rings in special cases.
将扩大G-分次环的概念加以推广,定义了一种新的分次环——扩大(G,H)-分次环,给出其两个等价刻划,并在R(G,H)-A g r中引入N oetherian模的概念,讨论了R(G,H)-A g r与(Re,H)-g r范畴间N oetherian模的一些性质与关系。
2.
The BrownMcCoy radicals of the graded rings are studied.
研究了分次环的Brown-McCoy根,用新的方法证明并推广了文献[1]中的主要结果,证明在比自由群更广泛的群类上分次环的Brown-McCoy根是分次的。
3.
In this note ,we characterize the graded Bear radical,graded koethe radical,graded Levitizki radical and graded Brown-McCoy radical in the category of associative monoid-graded rings (not necessarily with 1) and grade-preserving ring homomorphisms,with element properties.
在一般Monoid—分次环 (未必有 1)范畴中 ,给出了分次Bear根 ,分次Koethe根 ,分次Levitizki根和分次Brown -McCoy -根的元素特性 ,并分别给出了对应于这几个根的分次半单环的结构定理 ,指出了分次环A = x∈MAx 的分次根和结合环Ae 的根之间的密切关系。
5) H-graded ring
H-分次环
1.
Let R be a G-graded ring with local units,if we view H-graded rings R#G/H as-setH/K-graded rings,then we will get the category(H/K,R#G/H)-gr is isomorphic to the category(G/K,R)-gr.
若R是具有局部单位元的G-分次环则可将H-分次环自然地看成H-集H/K-分次环,得到H/K-分次-模范畴(H/K,)-gr与G/K-分次R-模范畴(G/K,R)-gr同构。
6) M-graded ring
M-分次环
补充资料:分式环
分式环
fractions, ring of
包,H=Hom,(及,天)是右R模穴的自同态环.环Q,:(R)也可定义为方向极限 吵Hom(D,R),其中D是R的所有稠密右理想集合(环R的一个右理想D称为稠密理想(de出eideal),如果 丫0护r,,r:任R己r〔R(r tr务O,r、r 6D).【补注】这个概念也被称为亨巧(nng of quatient)· 许永华译分式环[n,d沁困,垃犯of:,aeT。。x Ko月姗。] 与含有恒等元的结合环R相联系的一个环.R的(右经典的)分不可(nngof俪ctions)是这样的环Qc,(R),在此环中R的每个正则元(即非零因子)是可逆的,并且Qcl(R)的每个元素有形式苗一’,其中,a,b〔R.环Qcl(R)存在当且仅当R满足右0此条件(见结合环与结合代数(别粥。心巨tiVe们n邵andai-罗b招s)).R的极大(或完全)的右分式环是环Qma二(R)二Hom“(穴,穴),其中穴作为右R模是R的内射
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条