1) Time dependent particle number representation
含时粒子数表象
2) particle picture
粒子数表象
1.
In this paper the harmiltonian of one dimensional non harmonic oscillator is taken as = 0+ e - ∑x 2l=0 ll! and ′= e - ∑x 2l=0 ll! as pertubative term, the diagonal matrix elements of ′ in particle picture are obtained.
本文取一维非谐振子哈密顿量为H=H0+ex-2l=0xll!,令H′^=ex-2l=0xll!为微扰,求得H′^在粒子数表象中的对角矩阵元,并用微扰法计算了单价离子晶体的内能与结合
3) quasi-particle representation
准粒子表象
4) composite particle representation
复合粒子表象
1.
An approximate boson representation of the SO(8) model Hamiltonian in the composite particle representation method is given and compared with the boson expansion and the dyson boson mapping method results.
求出了SO(8)模型哈密顿量在复合粒子表象中的玻色子近似解析表示,并与玻色子展开方法和Dyson玻色子映射方法求出的结果进行了比较。
2.
In the present paper, the wavefunctions of the composite particle representation theory(CPRT) are discussed, and the CPRT wavefunction for 20O ground state is constructed.
讨论复合粒子表象理论(CPRT)的波函数,并计算20O基态CPRT的波函数,结果表明,其费米子空间部分就是壳模型波函数。
5) phonon occupation number representation
声子数表象
1.
Treating the anharmonic terms of potential energy as perturbations,and employing the formulas for atomic displacements and Hamiltonian in phonon occupation number representation,the formulas for thermal expansion coefficients of crystal nano-wires are derived and the numerical calculations are carried out in this paper.
将原子间相互作用势的非谐项作为微扰,运用声子数表象中的晶格原子振动位移和晶格振动哈密顿公式,推导了纳米晶体线的热膨胀系数公式,并进行了数值计算。
6) population risetime
粒子数增长时间
补充资料:粒子数比
分子式:
分子量:
CAS号:
性质:符号为R,粒子i与粒子k的粒子数比定义为粒子i的粒子数Ni除以粒子k的粒子数Nk。粒子数比为无量纲量。当粒子本身就是物质的量的基本单元时,粒子数比等于物质的量比。
分子量:
CAS号:
性质:符号为R,粒子i与粒子k的粒子数比定义为粒子i的粒子数Ni除以粒子k的粒子数Nk。粒子数比为无量纲量。当粒子本身就是物质的量的基本单元时,粒子数比等于物质的量比。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条