1) asymptotic confidence interval
渐进置信区间
1.
Based on grouped data, the asymptotic nonnality of the maximum likelihood estimate (MLE) for mean of the single-parameter exponential distribution is proved from a new point of view, and the asymptotic confidence interval is derived.
从新的角度证明了分组数据下指数分布总体均值的极大似然估计(MLE)的渐进正态性,给出了该均值的渐进置信区间。
2) Asymptotical confidence interval
渐近置信区间
3) Approximate and asymptotic confidence interval
逼近与渐近置信区间
4) asymptotic shortest confidence interva
渐近最短置信区间
5) improved confidence interval
改进置信区间
1.
By use of the improved method of the parameter estimator,which is used in the estimation problem with the ordered unkonwn distribution parameters,the best equivariant confidence interval is improved and a class of improved confidence intervals are construc.
同时,利用估计问题中对序限制下参数估计量的改进方法,结合分布参数之间的序限制改进了所得的最优同变置信区间,构造了一族改进置信区间。
2.
By combining the IERD method of the parameter estimator which is used in the estimation theroy,with the order restriction of the unknown distribution parameters,the usual equivariant minimax confidence interval is improved and a class of improved confidence intervals are constructed.
利用未知分布参数之间的序限制,通过使用改进估计量的IERD方法,对无序限制情况下正态均值的minimax置信区间进行了改进,构造了一族改进置信区间。
6) error-in-responses
渐近置信区域
1.
Aim To study partially linear error-in-responses models.
结果得到了W ilks定理的非参数形式,定理用来构造参数向量的渐近置信区域。
补充资料:单侧置信区间
分子式:
CAS号:
性质:只设置在被估参数一侧,左侧或右侧的置信区间。
CAS号:
性质:只设置在被估参数一侧,左侧或右侧的置信区间。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条