1) dense subspace
稠密子空间
1.
A space \%X\% is said to have the property \%(wa)\% if for every open cover \%U of \%X\% and every dense subspace \%DX\%, there exists a discrete subset \%FD\% such that \%St(F, \%U \%)=X\%, where \%St(F,T]\%U \%)={U \%U \%:UF}\%.
一个空间X被称为具有性质(wa),如果对于空间X的任意覆盖U和对于X的任意稠密子空间D,在D中存在一个离散子集F,使得St(F,U)=X,其中St(F,U)=∪{U∈U:U∩F≠}。
2) pure closed weakly dense subspaces
真闭弱稠子空间
3) dense subset
稠密子集
4) dense subgraph
稠密子图
5) Denisity submodule
稠密子模
6) ∨-generators dense and commutative lattice
∨-生成子稠交换子空间格
补充资料:亏子空间
亏子空间
eficiency subspace ^ defect subspace, defective subspace
亏子空间【山反妇娜田加,ce或山免以s而p暇,山丘尤tivesubspaCe;八e中eKTooe no皿n一oeTpaoeT.1,算子的 算子A,二A一又I的值域兀二{y=(A一又I)x:x任D,}的正交补D,,其中A是定义于Hilbert空间H中的线性流形D,上的线性算子,而几是A的一个正则值(正则点).这里,一个算子A的正则值(比孚血r从司ueofanoperator)理解为参数又的一个值,使方程(A一又I)x二y对任何y有唯一的解,而算子(A一又I)”是有界的,即A的预解式(~l-瓤)(A一又I)一‘有界.当又变化时,亏子空间D*也随着变化,但是对属于A的全部正则值构成的开集的一个连通分支的一切之,亏子空间D*的维数是相同的. 如果A是一个具有稠密定义域几的对称算子,它的正则值的连通分支是上半及下半平面.在这一情形下,D*一{x任D矛:A’二一Ix},其中A’是A的伴随算子,而亏量叭二djln只及。一dimD一,均称为算子A的(正的及负的)亏指数(由反记ncy indi-渭of an opemtor).此外 D,·=D,OD:①D_,,即D,·是D,,D‘,D_,的直和.因而,如果n十=作_=O,那么算子A是自共扼的;否则,一个对称算子的亏子空间便刻画了它偏离一个自共扼算子的程度. 亏子空间在构造对称算子到极大算子或自共扼算子(超极大算子)的扩张中起着重要作用.[种比,工圆粼出阴摹丁即牛脚粤LI七g切以J仙‘Ulano拌rator)的定义不十分正确而应理解如下.值又是A的一个正则值,如果存在正数介=k(劝>O,使得对一切x6几,}(A一久I)x]})kl{xj}成立.在这种情形下,A一又I的核仅由零向量组成,且A一又I的象是闭的(但不必等于整个空间).王声望译
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条