说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 分数维微分
1)  fractal differentiation
分数维微分
2)  fractional calculus
分数维微积分
1.
Extension of Lyapunov second method by fractional calculus;
利用分数维微积分推广Lyapunov第二方法
3)  differential box-counting dimension
微分计盒维数
1.
On the basis of differential box-counting dimension and multi-fractal dimension,a novel image retrieval algorithm using fractal dimensions is proposed,which makes use of the texture information.
在研究两种分数维———微分计盒维数和多分形维数的基础上提出了分数维直方图的概念 ,并把它用于基于内容的图像检索 ,提出了一种新的纹理特征检索算法———二维分数维直方图相交法 对Brodatz标准纹理库和真实图像库检索的结果表明其方法具有良好的性能 ,与QBIC系统的纹理检索结果相比更符合人的视觉特
4)  microstructure fractal dimension
微结构分形维数
5)  sectional micro fractal
微观断面分数维
6)  fractional derivative
分数微分
1.
The analytical solution of a viscoelastic continuous beam whose damping characteristics are described in terms of a fractional derivative of arbitrary order was derived by means of the Adomian decomposition method.
利用Adomian分解法,得到了由任意阶分数微分描述的具有阻尼特性的黏弹性连续梁的解析解。
补充资料:分数阶积分与微分


分数阶积分与微分
og fractional integration and differentia-

分数阶积分的逆运算称为分数阶微分:若几介F,则f为F的:阶分数阶导数(na ctional deriVative).若0<戊0: ;、一上一f一工鱼一一添 r回几恤一t)’-(对f给予适当的限制;见!IL那里还包含算子人关于乌的估计). 下列定义(H.研几yl,1917)对可积的具有2二周期并在周期上具零均值的函数是方便的.设 f(x,一{采0cn“‘”’一艺‘、“‘”’,则f的以:>0)阶叭几贝积分(W亡ylintegl司)用式 ,,eC才月x 了_IX】~Z—!乙l 气!n)-定义;并且斑吞>0)阶导数尸用方程 d” fp(x)“~子二天一,(x) v一了dx”护”一户v,定义,这里n是大于刀的最小整数(应注意天(x)与几f(x)重合). 这些定义在广义函数论的框架中有进一步的发展.对周期的广义函数 f一艺‘毕切·分数阶积分灯=人的运算可据式(2)对一切实值:实现(若仪为负的,人f与“阶偏导数一致)且有关于参数“的半群性质. 在n维空间X中分数阶积分运算的类似式为R免业位势(Riesz potential;或俘挚掣积分恤把脚!of poten-tjal tyPe)) 。,,、,_.。r((n一“、/2、rf(x、 八_I《Xl二兀一t‘今-二一二言~一二二一‘二.--~‘‘戈二‘~dt T’t以j乙)竺}X一艺r” ‘、,,X凡的逆运算称为“阶Riesz导数(Riesz derivati记).分数阶积分与微分l云.西加目如吻阳‘刃翻日由场,曰血-肠即;八p浦姗。HT即.脚.翻.比。月.中中epe。朋.碑旧曰皿e],亦称分数次积分与微分 积分与微分运算到分数阶情形的推广,设f为区间[a,bl上可积函数,并设I汀(x)为f在la,x]上的积分,而嵘f(x)为此_、f(x)在ta,xl上的积分.,=2,3,…,那么有 ,。子‘。=~二一亡‘一犷,r‘八月,。、Y、、门、 卫_1 IX,一—1 IX一f,I吸tl“不.“浇无受D,111 IL“)了其中r间‘恤一I)!为r函数(手mi刀以丘山ctlon).上式右边对每个戊>0都有意义.等式(l)定义了f以a为始点的:阶分数阶积分(n习ctionalin噢州)或RI曰m以nn-Liou喇沮e积分(R~一Liou祖le int叩户1).对于复值参数:,算子叮被B.R记n艾Ir田(l时7)研究过,算子I:是线性的且有半群性质: 程「瑙(x)]二I:+,f(x).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条