1) Littlewood paley operators
Littlewood paley算子
2) Littlewood-Paley operator
Littlewood-Paley算子
1.
Boundedness of the Littlewood-Paley operators on Lipschitz functions on a space of homogenous type;
齐型空间上Littlewood-Paley算子在Lipschitz函数类上的有界性
2.
Properties of a kind of generalized Littlewood-Paley operators;
一类推广的Littlewood-Paley算子的性质
3.
Boundedness for multilinear commutator of Littlewood-Paley operator on some Hardy spaces;
Littlewood-Paley算子的多线性交换子在Hardy型空间的有界性
3) Littlewood-Paley operators
Littlewood-Paley算子
1.
Boundedness of commutators of Littlewood-Paley operators on weighted Herz-Hardy spaces;
Littlewood-Paley算子交换子在加权Herz型Hardy空间上的有界性
2.
In this paper,the author introduces the Herz-Hardy space and discuss es the boundedness of commutators of Littlewood-Paley operators on it.
本文介绍了Herz-Hardy空间及其性质,利用原子分解证明了Littlewood-Paley算子交换子在该空间上的有界性。
4) function of Littlewood-Paley
Littlewood-Paley函数
5) Hardy-Littlewood operator
Hardy-Littlewood算子
1.
Based on the definition of the Hardy -Littlewood operator,which is expan ded to even or odd function in real and the boundedness of the Hardy -Littlewood operator in the space BMO,this paper studies the qualities of operator in the space an d develops the new result of boundedn ess of the Hardy -Littlewood operato r in the space by estimating delicately.
文献[2]中,给出了R上奇偶延拓的Hardy-Littlewood算子的定义,并证明了Hardy-Little-wood算子在函数空间BMO上的有界性。
6) Littlewood-Paley gfunction
Littlewood-Paleyg函数
参考词条
Littlewood-Paleyg算子
Littlewood-Paleyg-函数
Hardy-Littlewood平均
Littlewood-Paley分解
Hardy-Littlewood型
Hardy-Littlewood定理
Littlewood-paley-函数
Littlewood-Paley理论
Littlewood-Paley gλ*
Littlewood问题
Littlewood多项式
Hardy-Littlewood方法
Hardy-Littlewood不等式
Littlewood-Paley g-函数
Littlewood-paleyg*λ-函数
Hardy-Littlewood逆定理
Harey-Littlewood不等式
Littlewood-Paley g 函数
Hardy-Littlewood型定理
井下分离器
苏式
补充资料:凹算子与凸算子
凹算子与凸算子
concave and convex operators
凹算子与凸算子「阴~皿d阴vex.耳阳.勿韶;.留叮.肠疽“‘.小啊j阅雌口叹甲司 半序空间中的非线性算子,类似于一个实变量的凹函数与凸函数. 一个Banach空间中的在某个锥K上是正的非线性算子A,称为凹的(concave)(更确切地,在K上u。凹的),如果 l)对任何的非零元x任K,下面的不等式成立: a(x)u。(Ax续斑x)u。,这里u。是K的某个固定的非零元,以x)与口(x)是正的纯量函数; 2)对每个使得 at(x)u。续x《月1(x)u。,al,月l>0,成立的x‘K,下面的关系成立二 A(tx))(l+,(x,t))tA(x),0
说明:补充资料仅用于学习参考,请勿用于其它任何用途。