1) complex quasi-Banach space
复拟Banach空间
2) quasi-Banach space
拟Banach空间
1.
In this paper,we discuss some properties of K convex sets,prove the quasi-Banach spaces are F spaces,and give equivalent conditions of quasinorm linear spaces.
讨论了K凸集的一些性质,证明了拟Banach空间是F空间,并给出了赋拟范线性空间的等价条件。
2.
Then we give several characterizations of q-uniformly TC convex quasi-Banach space.
本文目的在于研究取值于拟Banach空间的特殊鞅和特殊鞅不等式,鞅空间的相互关系并通过这些给出值空间的几何性质的特征。
3) complex Banach space
复Banach空间
4) complex couple Banach space
复偶Banach空间
5) geometry of complex Banach space
复Banach空间几何学
6) Banach space
Banach空间
1.
Generalized regular points of a C~1 map between Banach spaces;
Banach空间之间C~1映射的广义正则点(英文)
2.
On the convexity and smoothness of Banach space and its application;
Banach空间的凸性和光滑性及其应用
3.
Limited sets in Banach spaces;
Banach空间中的极限集
补充资料:Banach解析空间
Banach解析空间
Banach analytic space
析映射U~G的芽的层对形式为x~毋(x)f(x)的映射的芽的子层的商,其中卿U~Hom(F,G)是局部解析映射,而O(W)C小(G)是由在W中取值的映射生成的.层集中(W)定义了由E冶1犯比空间的开集及其解析映射的范畴K到f一’(0)上的集合的层的范畴的函子. 一个拓扑空间X,如果具有从范畴K映到X中的集合(其中所有点有同构于某个局部模型的邻域)的层的范畴的函子,就称为压m朗h解析空间(Rm朗h analytjcs详戊). 复解析空间形成E以naeh解析空间范畴的一个完全子范畴,一个E匕朋‘h解析空间是有限维的,如果它的每一个点x有同构于这种模型产(U,F,f)的邻域,且存在映射g:U~U,它诱导出模型的一个自同构,且有完全连续的微分dg二(【11). 压m朗h解析空间的第二种特殊情形是B以比止h解析谁形(E以朋由anal沙n以‘儿ld),即局部同构于E以.队上空间的开集的解析空间一个重要例子是C上的Rm朗h空间的有闭余空间的闭线性子空间的流形. 亨枣呻窖的丘现朗h解衍卑(刨把勿一由助月E以na比出皿lytics比),即形式为召(U,口,f)的模型,具有类似于经典性质的局部性质:原始分解,Hilbert零点定理,局部描述定理,等等,都是可应用的([2]).山皿dl解析空间!Ban汕analytic spa“,玩毗、,8oa“aJ“T“叨ecK0e nP0c1Pane一、Bo} 解析空间概念的无限维推广,‘白产生J对解析结构形变(〔le阮川刀atlon)的研究,这甩,局部模型是1至11长Icll解析集(Banaclla耐卯c set),即C「的山.山空间(即na山s禅ce)E的开集U的子集尸(U,八f)一f’(0),其中少仁 卜F是映到压川aeh空间F的解析映射(a耐 ytlctnaPPing).与有限维情形不同之处在于:在局部模型「.它没有给定一个结构层,似有一个层集小(体),其中体是任意Banaeh空间G中的开集这时,小(G)定义为解
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条