说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 分布函数弱收敛
1)  weak convergence of distribution
分布函数弱收敛
1.
A Sufficient and necessary condition on weak convergence of joint distribution of fixed rank order statistics and its concomitants is obtained, also a sufficient condition on weak convergence of distribution of the maxima of concomitants of selected order statistics is obtained.
得到了固定秩次序统计量和它的伴随次序统计量联合分布弱收敛的一个充分必要条件,同时给出了一组选定的伴随次序统计量的极大值的分布函数弱收敛的充分条件。
2)  weak convergence for distribution functions
分布函数的弱收敛
3)  distributional weak convergence
分布弱收敛
4)  convergent function
收敛函数
5)  function convergence
函数收敛
1.
By using set convergence and function convergence, we establish the convergence for set-valued mappings and present the convergence results for the perturbed equilibrium problems.
利用集收敛、函数收敛建立了集值映射收敛的概念及其性质 ,并依此讨论了平衡问题解的收敛性 。
6)  weak convergence of probability distribution
概率分布的弱收敛
补充资料:概率测度的弱收敛


概率测度的弱收敛
eak convergence of probability measores

【补注】概率测度弱收敛的一般背景是在完全可分度虽空间(n犯川C sPace)(X,p)(亦见完全空间(comP-letesPace);可分空间(sep娜blesP毗))上讨论的,p是距离,具有定义在X的BOrel子集上的概率测度召。,n二O,l,,…如果对定义在X上的每个有界连续函数f,当。~二时,有Jfd产。~了fd拜。,则称拜,弱收敛到产。.如果在X中取值的随机变量氦的分布是拜。,n=o,l,…,如果拼。弱收敛到群。就写作省。人‘。,并且称七。依分布收敛到么,(亦见依分布收敛(①n凭r罗nCe in dis苗bution)). 在概率论中使用最普通的距离空间是k维Euclide空间Rk,〔0,l]上连续函数空间C[0,11以及在仁O,11上右连续具有左极限的函数空间Dto,1]. 更为丰富的距离空间中的弱收敛比在Eucljd空间中的用处大得多.这是因为在R’中依分布收敛的各种各样的结果可由它借助于连续映射定理(conti-nuo璐maPping tl篮幻哪)导出.该定理说,如果在(x,,)中着。二‘。且映射儿:x~R是连续的(或至少是可测的,且P(尝。6D*)二O,其中D*是h的不连续点集),则h(亡。)‘h(省。).在许多应用中极限随机元是Bro”.运动(Bro认们坦n mot」on),它以概率1具有连续轨道. 最基本的弱收敛结果之一是关于和s。=艺夕_:x.,n)1,的L心璐ker定理(功nsker tll印reTn),其中戈是具有EX:=0,EX)‘1,i=1,2,…,的独立同分布随机变量.可以这样来陈述其轮廓:在C【O,l]中,令S。=o,S。(t)二n一”,{SL。:l+(nt一[nt])·戈。t〕+、},o(t(l,其中卜]表示x的整数部分,则功挑ker定理断言s。(t)车w(t),其中w(t)是标准Brown运动.应用连续映射定理很容易提供对诸如~1、*‘。S*,max,、*‘。k一”2 15*l,艺又_:了(S*)。)和艺二_,:(s、,s*+1)等函数的依分布收敛结果,其中I是示性函数而下(“,b)=l,如ab<仇=0,其他.概率测度的弱收敛【W.山。皿到曰岁翔沈of声触晒ty~-,.留;c“浦aa cxo口”Moc、解妙~oc珊0益Me伽]
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条