1) the definition of inner degrees of freedom
内自由度定义
2) inner degrees of freedom
内自由度
1.
The essence of inner degrees of freedom of incompatible elements was the degeneration of generalized degrees of freedom, which lay the foundation of constructing mechanism study and behavior analysis for incompatible elements.
提出了广义自由度的概念,并通过对广义自由度施加一定约束,证明了在一定条件下非协调元是协调等参元的一种特例,而非协调元内自由度实质是广义自由度的一种退化。
3) generalized degree of freedom
广义自由度
1.
Theory and methodology on calculation of degree of freedom for non-ideal mechanism-generalized degree of freedom;
非理想机构自由度计算理论与方法——广义自由度
2.
On the basis of the hypothetic displacement field,various parameters of the box girder section are concentrated in the structural axis,and the displacement model of the generalized degree of freedom is built based on the mechanical character of the box girder.
为了正确把握异型薄壁箱梁结构的受力行为,提高结构的计算精度,提出基于位移场的假设,将结构断面上的各参数集中到结构轴线上,根据结构力学特征建立广义自由度的位移模型,把三维空间结构简化成一维梁结构,得到一种在普通梁理论基础上考虑约束扭转和畸变效应的一维杆系分析单元。
4) generalized degrees of freedom
广义自由度
1.
The essence of inner degrees of freedom of incompatible elements was the degeneration of generalized degrees of freedom, which lay the foundation of constructing mechanism study and behavior analysis for incompatible elements.
提出了广义自由度的概念,并通过对广义自由度施加一定约束,证明了在一定条件下非协调元是协调等参元的一种特例,而非协调元内自由度实质是广义自由度的一种退化。
2.
Based on the theory of phase space reconstruction, with considering the generalized degrees of freedom and the neighbors weight an improved criterion for selection of the optimal neighborhood is proposed.
该方法综合考虑了广义自由度和邻近点权重,提出了加权动态确定最邻近点数的判定条件,并利用基函数拟合确定出的最邻近点进行预测。
3.
The correlation between compatible and incompatible isoparametric elements was proved by applying some restrictions to the generalized degrees of freedom.
本文据协调等参元位移模式转换式,提出了广义自由度的概念。
5) internal degrees of freedom
内部自由度
1.
The new concept of the effective number of additional internal degrees of freedom in incompatible elements is proposed.
本文研究了内参型非协调元附加内部自由度的有效数目,结合平面四结点元讨论了有效附加内部非协调位移的合理形式。
6) internal and external degree of freedom
内外自由度
补充资料:残余自由度
分子式:
CAS号:
性质:回归分析中计算残余方差独立项的数目,其值为f=n-m-1,n是用来建立回归方程实验点的数目,m是回归方程中自变量的数目。
CAS号:
性质:回归分析中计算残余方差独立项的数目,其值为f=n-m-1,n是用来建立回归方程实验点的数目,m是回归方程中自变量的数目。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条