1) elastoplastic line spring model
弹塑性线弹簧模型
1.
Under the hypothesis of small scale yielding, the calculating model of a surface crack in a general oblate shell is established by combining the D-M model and elastoplastic line spring model, and the governing equation and the mathematical formula of COD are derived.
在较小范围屈服条件下,将D-M模型和弹塑性线弹簧模型相结合,建立了屈服后一般扁壳表面裂纹的计算模型,导出了其控制方程和相应的COD计算公式。
2) Nonlinear Spring Model
非线性弹簧模型
1.
Adopting numerical fitting of analytic model,equivalent nonlinear spring model of cable was deduced.
文中在纤绳模型解析式的基础上,得到了其非线性弹性刚度,在此基础上,采用由解析式数值拟合的方法,得出了纤绳等效非线性弹簧模型。
3) line-spring model
线弹簧模型
1.
The paper presents an approach to deal with residual stress intensity factors for surface cracks in a thick plate with butt joints by using line-spring model.
利用线弹簧模型求解对接厚板表面裂纹的残余应力强度因子。
2.
The paper demonstrates that the embedded crack in an elastic strip under step load is solved by using the line-spring model combined with perfect ANSYS software .
将线弹簧模型与有限元软件ANSYS相结合,求解了冲击载荷作用下的含内埋裂纹的板条问题,所得的结果与已有的有限元解吻合良好,此方法可推广用于其它三维裂纹动态响应分析。
3.
In this paper, a line-spring model for the general beam with an edge crack and its theoretical explannation is presented.
建立了一般有限长裂纹的线弹簧模型,给出了模型的理论解释。
4) Line spring model
线弹簧模型
1.
Application of line spring model for frame;
线弹簧模型在框架中的应用
2.
In this paper a stiffness matrix of the line spring model to simulate the effect of net ligament for the uncracked part is first derived on the basis of the energy principle in conjunction with the fracture mechanics method.
根据能量原理和断裂力学理论导出了模拟未开裂部分韧带效果的线弹簧模型的刚度矩阵,从而建立了一种裂纹梁分析的有限元模型。
3.
It researches influencing of different length and position of crack to natural frequency of frame which applying for line spring model,and compares calculating data with experimental data,the result indicates the model is feasible.
把线弹簧模型应用到框架中,研究不同裂纹长度和裂纹位置对框架的固有频率的影响,并把计算数据与现实的数据进行比较,结果证明,该模型应用到框架结构是可行的,同时分析线弹簧模型的局限性。
5) 3D shell-nonlinear spring model
三维壳-非线性弹簧模型
6) beam non linear spring model
梁-非线性弹簧模型
补充资料:弹—塑性变分原理
弹—塑性变分原理
elastic-plastic variational principle
tan一suxing bionfen yuanll弹一塑性变分原理(elastie一plastic variation-al Principle)适于弹一塑性材料的能量泛函的极值理论。包括最小势能原理和最小余能原理。塑性加工力学中常用最小势能原理。变形力学问题的能量解法和有限元解法都基于最小势能原理。最小势能原理有全量理论最小势能原理和增量理论最小势能原理。 全量理论最小势能原理在极值路径(应变比能取极值的路径)下运动许可的位移场u‘中,真实的位移和应变使所对应的总势能取最小,即总势能泛涵巾取最小值,其表达式为”一0,’一万〔A(一,一关一〕dV一好多!一‘“ (l)式中“:为位移;户:为外力已知面上的单位表面力;关为体力;A(气)为应变比能。 A(勒)随材料的模型而异。对应变硬化材料(图a), E严_‘_‘_ A(乓r)一二丁二一气助+{刃(r)dr(2) 6(1一2刃~一“‘J一、-一、- 0式中E,,分别为弹性模量和泊松比;艺一硫瓜,r一掩不万,,,f,一,一音。魔。,,一,一,一音。*。!,;。f,为克罗内克(L.Kroneeker)记号,i=夕时a,一l,i笋少时民,一。,把式(2)代入式(1)便得到卡恰诺夫(几·M·Ka、aHoe)原理x的表达式。i厂:八 I’—几 I’一 ab 乞一乏(r)关系图 a一应变硬化材料;占~理想塑性材料 对于理想塑性材料(图b), 艺~ZGr(r
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条