1) integrable-square solutiox
平方可积解
2) Quadratic integrability
平方可积性
1.
Suppose the solution is existed, two conclusions of the boundness and quadratic integrability of the solution are obtained.
首先得到了一类含滞后变元的积分不等式的解 ,然后考虑二阶非线性微分方程(r(t)x′(t) )′ +[a(t) +b(t) ]x(t) =f[t,x(t) ,x( φ(t) ) ],假设它的解存在 ,文中得到了解的有界性与平方可积性的两个结论 。
3) Pre-square integrable
准平方可积
4) square integrable martingales
平方可积鞅
1.
In this paper,we prove that if M and N are square integrable martingales,φ and ψare predictable processes, E and E then are the quadratic variation of M, N respectively, and [M,N]=(1/2)([M+N][M]-[N]).
证明了如下结果:设M,N为平方可积鞅,φ,ψ为可料过程,且E分别表示M,N的二次变差,Rt=[0,t],[M,N]=(1/2)([M+N]-[M]-[N])。
5) square integrable
平方可积的
6) square integrable and symmetric kernel
平方可积对称核
1.
Using property of non-zero characteristics of the integral operator with square integrable and symmetric kernel, this paper presents the theorem of the existence and uniqueness of solutions of linear integral equation with square integral and symmetric kernel, and the applicable formulas of its solutions.
利用平方可积对称核的积分算子非零特征的性质 ,给出了具平方可积对称核的线性积分方程解的存在与唯一性定理以及适用的求解公式。
补充资料:积积
1.长久累积。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条