说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> Ishikawa迭代程序的稳定性
1)  Stability of the Ishikawa Iteration Procedures
Ishikawa迭代程序的稳定性
2)  Ishikawa iteration procedures
Ishikawa迭代程序
1.
Without Lipschitz assumption in real uniformly smooth Banach space,by virtue of some analysis theory and Ishikawa iteration techniques,the stable results of the Ishikawa iteration procedures have been given for one class of contiuous and Φ-generalized pseudocontractive mapping with a bounded range.
在一致光滑Banach空间中,使用分析的基本理论和Ishikawa迭代技巧,在没有Lipschitzian假设的前提下,给出了某类具有值域有界的连续Φ广义伪压缩映射的Ishikawa迭代程序稳定性的一些结果,该结果改进和扩展了近期相关的结果。
2.
In uniformly smooth Banach space,the stable of the Ishikawa iteration procedures are researched for one class of nonLipschitz and Φstongly pseudocontractive operator,By virtue of supply the basis of structure and theory for further discussing stability of iteration procedures,the results improve and extened the recent corresponding results.
在一致光滑Banach空间中,研究一类非LipschitzΦ强伪压缩算子的Ishikawa迭代程度的稳定性;并使用分析技巧,证明了Ishikawa迭代程序是几乎T稳定的。
3)  Ishikawa iterative process with errors
带误差的Ishikawa迭代程序
1.
The problem of approximating solutions to theequation Tx = f by the Ishikawa iterative process with errors is investigated , where X0 ∈ X , {un} , {v n } are bounded sequences in X, and {αn } ,{βn} are real sequences in [ 0 , 1 ] .
研究了用带误差的Ishikawa迭代程序:来逼近方程Tx=f解的问题,其中x0∈X,{un},{vn}是X中的有界序列,{αn},{βn}是[0,1]中的实数列。
2.
It is shown that under suitable conditions, the Ishikawa iterative process with errors converges strongly to the unique solution of the equation Hx + Tx = f.
设X是任一实Banach空间,H:X→X是一致连续算子,且H+T:X→X是一强增生算子,证明了,在适当条件下,带误差的Ishikawa迭代程序强收敛到方程Hx+Tx=f的唯一解,还给出了讨论一次压缩算子不动点的逼近问题的结果。
4)  Ishikawa-type iterative procedure with errors
带误差的Ishikawa型迭代程序
5)  modified Ishikawa iteration process
修改了的Ishikawa迭代程序
1.
It is shown that under some suitable conditions, the sequence {xn} defined by the modified Ishikawa iteration process: xn+1 = rpn,pn = (1 - an)xn + anTmn ryn + un, yn = (1 - bn)xn + bnTkn xn + vn, (n≥1) converges weakly to a fixed point of T.
该文证明了在某些适当的条件下,由下列修改了的Ishikawa迭代程序所定义的序列{xn}=xn+1=rpn,pn=(1-an)xn+anTmn ryn+un,yn=(1-bn)xn+bnTkn xn+vn, (n≥1)弱收敛到t的不动点。
6)  Ishikawa iterative sequence
Ishikawa迭代程序列
补充资料:陈述性/程序性知识


陈述性/程序性知识
declarative-procedural knowledge

  陈述性程序性知识(d eelarative一proeeduralknowledge)现代认知心理学所划分的两种基本的知识类型。陈述性知识指知道是什么,即关于事实的知识;程序性知识指知道怎么做,即关于技能的知识。大部分陈述性知识能够用语言表述,而程序性知识却很难被意识到。例如,大多数人知道怎样骑自行车,但不能用语言清楚地表述出来;而3 X4二12则能用语言表述。前者是程序性知识,后者是陈述性知识。认知心理学主要关心这两类知识在头脑中是怎样被表征的。一般认为,陈述性知识有言语、意象和命题三种表征方式,而程序性知识则是由一套产生式系统来表征的。 (谭立海撰粤藕铃审)
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条