1) quasi elementary convergence groups
拟初等收敛群
1.
As a generalization of the discrete and elementary convergence groups, in this paper, two kinds of general elementary convergence groups (elementary convergence groups and quasi elementary convergence groups) are defined and discussed.
作为 Rn上的离散收敛群中的初等群的推广 ,本文定义了 Rn上一般收敛群中的初等群和拟初等群 ,并得到了初等收敛群、拟初等收敛群和非拟初等收敛群各自的一些性质和特征 。
2) elementary convergence groups
初等收敛群
1.
As a generalization of the discrete and elementary convergence groups, in this paper, two kinds of general elementary convergence groups (elementary convergence groups and quasi elementary convergence groups) are defined and discussed.
作为 Rn上的离散收敛群中的初等群的推广 ,本文定义了 Rn上一般收敛群中的初等群和拟初等群 ,并得到了初等收敛群、拟初等收敛群和非拟初等收敛群各自的一些性质和特征 。
3) convergence in population
种群收敛
4) convergence group
收敛群
1.
We investigate the commutator subgroup of a convergence group,and obtain the relationship between the elementariness of a convergence group and the cardinal number of the fixed point set of its commutator subgroup.
讨论了收敛群的换位子群 ,建立了收敛群的初等性与它的换位子群的不动点集的基数之间的联系 。
2.
By use of these properties, we prove a kind of maximal property of subgroups in convergence group.
得到了上收敛群中元素的一些性质,利用这些性质证明了收敛群中某些子群的一些极大性质。
5) quasi-weak convergence
拟弱收敛
1.
The quasi-weak convergence in C[a,b] is studied and applied to the boundary-value problems in the nonlinear ordinary differential equations without the assumption of the continuity, compactness and convexity.
研究了连续函数空间中凹 (凸 )函数列的拟弱收敛性 ,并应用于没有连续性紧性和凹凸性假定的二阶常微分方程的边值问题。
2.
Then,there exists a subsequence {x\-\{nk\}(t)} of {x\-b(t)} such that {x\-\{nk\}(t)} converges to x\-0(t)∈C in the quasi-weak convergence.
本文证明C[a ,b]中的有界凸函数序列 ,必有拟弱收敛子列 ,并对有关结果作了进一步补
6) quasi-convergent
拟收敛
1.
By virtue of the general property of powers of fuzzy matrix and the relation of ΔA to A, the powers of quasi-convergent fuzzy matrix are investigated.
利用模糊矩阵幂的一般性质及ΔA与A的关系,得出拟收敛模糊矩阵以周期2振荡,指数不超过2n+c(A)-2。
补充资料:拟一致收敛
拟一致收敛
quasi-uriform convergence
拟一致收敛t卿a威一翻而nnc回erg叨ce;姗””p妞”。·MeP.a二cxo及.MocT‘] 一致收敛(U址fon们convergence)的一种推广.从拓扑空间X到度量空间Y内,点态收敛于映射f的映射序列{f,}称为拟一致收敛的,如果对于任意:>。及任意正整数N。存在X的可数开搜盖{r。,r、,…}及大于N的正整数序列。。,陀、,…,使得对于所有x〔r*,有p(f(x),f。*(x))<。.一致收敛蕴涵拟一致收敛.对于连续函数序列,拟一致收敛是其极限函数连续的必要充分条件(Arze恤一An比caH-即oB定理(Arze恤一A】e抽an山ov lh eon万n)).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条