1) Binding electron pairs
束缚电子对
2) bound electron
束缚电子
1.
In this paper, the problem of surge radiation and ionization of bound electron in the interaction of ultra-short laser pulse and partial ionized plasma was studied for the first time.
第一次讨论了超强超短激光与部分离化等离子体相互作用中,束缚电子的振荡辐射和电离问题。
2.
The influence of bound electron screening on neutrino capture in earth is discussed in this paper.
分析了地球实验室环境下束缚电子屏蔽效应对中微子俘获反应的影响,指出束缚电子的电荷屏蔽会使中微子诱导反应截面减小,在分析处理对原子或离子的电子俘获反应时,应考虑束缚电子的屏蔽效应,但Debey屏蔽近似处理失效,寻求另一个合理的电荷屏蔽表达式是非常重要的。
3) electronic bound state
电子束缚态
4) unbound electron
无束缚电子
5) quasi-bound electron
准束缚电子
6) electron-ions bound state
电子-离子束缚态
1.
A strict description of quantum mechanics on electron-ions bound state three-body system and two approximate solutions are given, which are (1) corresponding to p e p bound state X rays with E p ≈12.
在文献[1]关于电子-离子束缚态的基本概念的基础上,对电子-离子束缚态三体系统给出严格的薛定谔方程,给出能量的近似解:(1)对p-e-p束缚态,释放单能Ep≈12。
补充资料:电子-正电子对的产生
电子-正电子对的产生
Electron-positron pair production
电子一正电子对的产生(e lectron-Positron Pair Produetion) 电子一正电子对的产生是一个负电子和一个正电子在原子核或基本粒子附近同时产生的过程。在所谓外部的电子对产生中,电磁波(光子)被吸收而产生电子对,高能下射线被吸收主要就是由于这个效应(见附图)。所谓内部的电子对产生并不与可观测到的电磁辐射相联系,当受激核释放出某些内部能量时就可能出现。电子对的产生具有重要的理论意义。它不仅是能量物质化的一个实例,而且也是狄拉克相对论性量子论的一个引人注目的验证。这个理论使定量地预言产生概率、电子微分分布和动能分配成为可能。其结论与实验结果很好地一致。参阅“相对论性1子论,,(relativisti。quantum theory)条。负电子原子核正电子外部的电子对(电子一正电子)的产生 只有光子能量大于Zmc,~1.02兆电子伏(,为电子质量,‘为光速)时,外部的电子对产生才有可能,这是产生静止电子对所需的能量。比此超出的能量h卜ZmcZ(,是光的频率,h是普朗克常量),则表现为所产生粒子的动能;在正负粒子之间的能量分配是无规的,例如正电子可以以大致一样的概率获得从o至加一Zm‘2间的任何能量。由于原子核对正电子的静电斥力,因此平均说来,正电子实际上获得比负电子较多的能量。 动量守恒定律要求初始光子的动量转移给它所产生的粒子。简单的计算表明,只有当第三,种粒子或粒子系统参与此过程时,动量守恒才能满足。通常,这第三种粒子可能是原子核,不过原则上任何带电粒子都可以使动量重建平衡。对于正负电子间给定的分配能量,原子核的反冲方向是任意的。因此电子发射的方向就不固定,而是无规地分布着。由于核的质量大,它从初始光子接受的能量就几乎近于零。关于守恒定律的讨论可参阅“核反应”(nudear reac-tion)条。 内部电子对经常从放射性物质中发射出来。在放射性衰变后,子核可以留有过剩的能量。尽管这个能量通常以电磁辐射的形式释放,但是,当能量超过ZnzcZ时,电子对产生也有可能与之竟争,其产生概率随着释放能量的提高而增加。电子对的角关联和产生概率还依赖于跃迁的多极级.参阅“多极辐封”(multipole radiation)、“正电子”(positron)和“童子场论"(quantum field theory)各条。 [巴克斯特龙(G.Baekstrom)撰]
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条