说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 修正递推规则
1)  update rule
修正递推规则
2)  updating recurrences
修正递推
1.
This paper introduces a special type of Matrix-variate DLM (Dynamic Linear Model)which gives the distribution of variance matrix Vt of observation error matrix when Vt is an unknown constant matrix,and proceeds to give the algorithm of updating recurrences and forecasting.
讨论了一类特殊矩阵变量DLM的观测误差方差阵Vt为未知常数矩阵情况下的分布,并给出了修正递推及其预测公式。
3)  rules of recognition
修正规则
4)  rule revising
规则修正
1.
Inspired by negative selection algorithm, the authors propose a classification rule revising strategy to implement the above observation.
基于否定选择算法的思想提出了分类规则修正策略,用反例样本集合对分类规则进行耐受,从分类规则错误判别的反例样本中再产生规则,与原来的规则组成新规则,称为增强关联规则。
5)  rule self-revise
规则自修正
6)  error correction rule
错误修正规则
1.
The extendible part introduces error correction rules w.
可扩展部分引入了错误修正规则对基本算法的求解错误进行修正,使求解正确率得到进一步的提高。
补充资料:递推估计算法
      利用时刻t上的参数估计孌(t)、存储向量嗘(t)与时刻 t+1上测量的输入和输出值u(t+1)和y(t+1)计算新参数值孌(t+1),再根据孌(t+1)计算出新参数值孌(t+2),直到获得满意的参数值为止。这种算法的每一步计算量都比较小,能够使用小型计算机进行离线或在线参数估计,可以估计时变参数,也可以实时估计适应控制器的参数(见适应控制系统)。20世纪60年代,递推估计算法得到迅速发展,到了70年代产生了许多不同的方法,例如,有离线方法的各种变形、卡尔曼滤波法、随机逼近方法和模型参考适应参数递推估计法等。递推估计算法的各种方法可以用一个统一的公式来描述:
  
  
  
  给孌(t),F(t),嫓(t)和w(t)不同的值就得到各种不同的方法:①递推最小二乘法;②递推增广最小二乘法;③递推近似极大似然法;④递推辅助变量法;⑤递推广义最小二乘法;⑥卡尔曼滤波参数估计;⑦随机逼近法;⑧模型参考适应法;⑨时变参数递推估计法。
  
  参考书目
   Lennart Ljung,Torsten Soderstrom, Theory and Practice of Recursive Identification,MIT Press., Combridge, Mass., 1983.

  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条