说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 不相容矩阵方程
1)  contradictory matrix equation
不相容矩阵方程
1.
Least squares solution to the contradictory matrix equation AX = B;
不相容矩阵方程AX=B的最小二乘解
2)  inconsistent equation
不相容方程
3)  tolerance matrix
相容矩阵
1.
Some new concepts were defined such as indiscernibility relation of general decision,the indiscernibility classes,joint decision tolerance matrix and a fast computation algorithm was proposed for reduction and rule extraction based on joint decision matrix in incomplete decision systems.
提出了广义决策的不可分辨关系及其不可分辨类、联合决策相容矩阵等概念以及不完备决策系统中基于联合决策相容矩阵的约简和规则提取的快速矩阵算法。
2.
Towards the goal of reasonable weights\' configuration for individual rule or index,the Analytic Hierarchy Process(AHP),incomplete judgment mechanism,together with tolerance matrix method was introduced.
通过层次分析法、残缺判断矩阵处理机制和相容矩阵分析法,实现了设备故障实例各准则和指标权重的合理配置。
4)  inconsistent linear equations
不相容方程组
5)  Matrix Equation
矩阵方程
1.
Iterative solution to a class of matrix equation;
一类矩阵方程的迭代解法
2.
The least-square solution of the matrix equation A~TXA=D in anti-symmetric and persymmetric matrix;
矩阵方程A~TXA=D的反对称次对称最小二乘解
3.
A study of solution existence for matrix equation AX+X~TC=B;
关于矩阵方程AX+X~TC=B的解的存在性的探讨
6)  matrix equations
矩阵方程
1.
A new method for obtaining matrix equations from operator equations: basis function expansion method;
根据算子方程得到矩阵方程的新方法-基函数展开法(英文)
2.
A necessary and sufficient condition for matrix equations and the expression of its general solutions;
矩阵方程A_(m×n)XB_(l×s)=D_(m×s)有解的一个充要条件及通解的表示
3.
The least square method is used to get the solutions to the matrix equations AX+YB=D and AX+XB=D , and a series of solutions to matrix equations are offered.
主要研究了解矩阵方程 AX+ YB=D与 AX+ XB=D的一种迭代方法 ,得到了一类矩阵方程的解
补充资料:矩阵微分方程


矩阵微分方程
matrix differential equation

矩阵微分方程【n.七议创晚ren创阅娜‘扣;M盯p“,Hoe几.巾中epe皿明一a几‘Hoe ypa二eH加e」 一个方程,以其中出现的函数的矩阵及其导数为未知量. 考虑下列形式的线性矩阵微分方程: X,=A(t)X,reR,(l)其中A(t)为具有局部Lebesgue可积元的n xn维矩阵函数,设X(约是方程(l)的满足条件X(t。)=I的绝对连续的解,这里I是单位矩阵.这时,向量函数x(r)=X(t)h(h‘R”)是线性方程组 x‘=A(t)x(2)满足条件x(t。)二h的解.反之,如果h:,…,h。6R”,而x,(t)是方程组(2)满足条件x‘(t。)=h‘(i=1,…,n)的解,则以解x‘(t)为列的矩阵是矩阵微分方程(l)的解.此外,如果向量h:,…,h。是线性无关的,则对于所有的踌R,detX(t)笋0. 方程(l)是下列矩阵微分方程(产生于稳定性理论)的特殊情况: X‘=A(r)X一XB(t)+C(t).(3)方程(3)的具有初始条件X(t。)=X。的解由下列公式给出: X(t)二U(t,t。)X。V(t,t。)+ +丁。(:,:)e(,):(:,:)己:, 亡O其中U(:,。)是方程(1)的具有条件X(s,s)=I的解,而V(t,、)是满足条件X(:,:)=I的矩阵微分方程X‘=B(OX的解. 在各种应用问题(镇定理论、最优控制理论、控制系统的滤过理论等等)中,所谓Rieeati矩阵微分方程(例亩议Rlccati differen杭习闪业石。n) X‘=A(t)X一XB(t)+C(t)+XD(t)X起着重要作用.例如,Riccati矩阵方程 x,=一(尸(t)+又I)Tx一X(F(t)+几I)一 一I+XG(t)G丁(t)X(这里T代表转置)对又)0在直线R上具有有界解X(t),并且对所有的h6R”,作R和某个。>O,不等式hTX(t)h)。hrh成立,则由反馈律u=一GT(t)X(t)x/2封闭的可控系统 x’=F(t)x+G(t)u,x任R”,u任R用的每个解都满足不等式 }x(t)}簇M lx(s)Ie一’(‘一’),s(t,这里l·l是Euc石d范数,且M与s无关.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条